| CARVIEW |
StreamingBench
Assessing the Gap for MLLMs to Achieve Streaming Video Understanding
2Beijing University of Posts and Telecommunications
Introduction
The rapid development of Multimodal Large Language Models (MLLMs) has expanded their capabilities from image comprehension to video understanding. However, most of these MLLMs focus primarily on offline video comprehension, necessitating extensive processing of all video frames before any queries can be made. This presents a significant gap compared to the human ability to watch, listen, think, and respond to streaming inputs in real time, highlighting the limitations of current MLLMs. In this paper, we introduce StreamingBench, the first comprehensive benchmark designed to evaluate the streaming video understanding capabilities of MLLMs. StreamingBench assesses three core aspects of streaming video understanding: real-time visual understanding, omni-source understanding, and contextual understanding. The benchmark consists of 18 tasks, featuring 900 videos and 4,500 human-curated QA pairs. Each video features five questions presented at different time points to simulate a continuous streaming scenario. We conduct experiments on StreamingBench with 13 open-source and proprietary MLLMs and find that even the most advanced proprietary MLLMs like Gemini 1.5 Pro and GPT-4o perform significantly below human-level streaming video understanding capabilities. We hope our work can facilitate further advancements for MLLMs, empowering them to approach human-level video comprehension and interaction in more realistic scenarios.
* This audio was generated by NoteBookLM
Leaderboard *
| Rank | Model | LLM Params |
Frames | Date | Overall (%) | Real-Time Visual Understanding (%) | Omni-Source Understanding (%) | Contextual Understanding (%) |
|---|---|---|---|---|---|---|---|---|
|
Gemini 1.5 Pro
|
- | Video | 2024-06-15 | 70.26 | 77.39 | 67.80 | 51.06 | |
|
MiniCPM-o 2.6
OpenBMB |
8B | 60 | 2025-01-14 | 66.01 | 79.88 | 53.40 | 38.45 | |
| GPT-4o
OpenAI |
- | 60 | 2024-06-15 | 64.10 | 74.54 | 50.95 | 47.94 | |
| InternLM-XC2.5-OL
Shanghai AI Lab |
7B | 64 | 2024-12-12 | 60.80 | 75.36 | 46.20 | 33.58 | |
| Claude 3.5 Sonnet
Anthropic |
- | 20 | 2024-07-30 | 59.71 | 74.04 | 41.40 | 37.83 | |
|
LLaVA-OneVision
Bytedance & NTU S-Lab |
7B | 32 | 2024-08-08 | 58.43 | 74.27 | 40.83 | 30.96 | |
| Qwen2-VL
Alibaba |
7B | 768 | 2024-08-19 | 56.99 | 71.15 | 40.73 | 33.08 | |
| MiniCPM-V 2.6
OpenBMB |
8B | 64 | 2024-08-12 | 57.67 | 72.43 | 40.23 | 33.39 | |
| VITA-1.5
NJU |
7B | 16 | 2025-01-03 | 57.36 | 70.88 | 40.80 | 35.83 | |
| InternVL2
Shanghai AI Lab |
8B | 32 | 2024-07-18 | 57.04 | 70.11 | 42.73 | 34.10 | |
| LLaVA-NeXT-Video
Bytedance & NTU S-Lab |
32B | 32 | 2024-05-10 | 56.68 | 69.83 | 41.73 | 34.29 | |
| Kangaroo
Meituan & UCAS |
8B | 64 | 2024-07-23 | 53.34 | 65.76 | 40.04 | 31.18 | |
| LongVA
NTU S-Lab |
7B | 128 | 2024-06-25 | 50.66 | 63.11 | 35.93 | 30.21 | |
| VILA-1.5
NVIDIA & MIT |
8B | 14 | 2024-07-21 | 49.46 | 61.54 | 37.53 | 26.66 | |
| Video-CCAM
QQMM |
14B | 32 | 2024-07-16 | 42.53 | 53.42 | 32.22 | 24.06 | |
| VideoLLaMA 2
Alibaba |
7B | 32 | 2024-08-29 | 43.33 | 52.58 | 35.92 | 23.69 |
| Rank | Model | LLM Params |
Frames | Date | Overall (%) | Real-Time Visual Understanding (%) | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| OP | CR | CS | ATP | EU | TR | PR | SU | ACP | CT | ||||||
|
MiniCPM-o 2.6
OpenBMB |
8B | 60 | 2025-01-14 | 79.88 | 85.01 | 85.94 | 89.91 | 85.95 | 80.12 | 86.60 | 76.85 | 74.80 | 74.79 | 46.11 | |
|
Gemini 1.5 Pro
|
- | 1 fps | 2024-06-15 | 77.39 | 83.43 | 77.94 | 89.24 | 81.65 | 79.17 | 83.92 | 83.93 | 60.32 | 74.87 | 49.22 | |
| InternLM-XC2.5-OL
Shanghai AI Lab |
7B | 64 | 2024-12-12 | 75.36 | 84.74 | 79.69 | 83.91 | 87.91 | 75.78 | 80.06 | 67.59 | 65.85 | 70.25 | 38.34 | |
| GPT-4o
OpenAI |
- | 60 | 2024-06-15 | 74.54 | 80.66 | 76.98 | 86.67 | 73.81 | 75.95 | 85.48 | 75.00 | 70.66 | 65.99 | 43.09 | |
|
LLaVA-OneVision
Bytedance & NTU S-Lab |
7B | 32 | 2024-08-08 | 74.27 | 82.83 | 77.34 | 83.23 | 83.33 | 72.05 | 74.77 | 73.15 | 68.29 | 71.10 | 41.97 | |
| Claude 3.5 Sonnet
Anthropic |
- | 20 | 2024-07-30 | 74.04 | 82.45 | 73.77 | 82.43 | 82.40 | 76.39 | 85.56 | 61.68 | 60.73 | 67.88 | 47.62 | |
| MiniCPM-V 2.6
OpenBMB |
8B | 64 | 2024-08-12 | 72.43 | 78.20 | 71.88 | 84.18 | 83.99 | 75.16 | 75.39 | 72.22 | 56.50 | 67.14 | 47.15 | |
| Qwen2-VL
Alibaba |
7B | 0.2-1 fps | 2024-08-19 | 71.15 | 75.75 | 79.69 | 76.58 | 79.08 | 74.53 | 75.08 | 74.07 | 65.85 | 65.16 | 41.97 | |
| VITA-1.5
NJU |
7B | 16 | 2025-01-03 | 70.88 | 77.66 | 82.81 | 82.33 | 79.34 | 72.67 | 71.34 | 67.59 | 62.20 | 69.12 | 32.12 | |
| InternVL2
Shanghai AI Lab |
8B | 32 | 2024-07-18 | 70.11 | 73.84 | 65.63 | 78.80 | 82.03 | 71.43 | 72.90 | 73.15 | 63.01 | 65.44 | 42.49 | |
| LLaVA-NeXT-Video
Bytedance & NTU S-Lab |
32B | 32 | 2024-05-10 | 69.83 | 80.11 | 71.09 | 80.70 | 80.72 | 71.43 | 73.21 | 62.96 | 59.35 | 63.17 | 36.79 | |
| Kangaroo
Meituan & UCAS |
7B | 64 | 2024-07-23 | 65.76 | 77.57 | 74.22 | 75.70 | 74.38 | 70.91 | 62.86 | 52.63 | 50.54 | 63.97 | 33.16 | |
| LongVA
NTU S-Lab |
7B | 128 | 2024-06-25 | 63.11 | 73.02 | 66.41 | 66.46 | 74.84 | 65.22 | 62.93 | 60.19 | 56.91 | 56.66 | 37.82 | |
| VILA-1.5
NVIDIA & MIT |
8B | 14 | 2024-07-21 | 61.54 | 71.12 | 57.81 | 74.68 | 72.22 | 70.81 | 62.62 | 51.85 | 51.22 | 60.34 | 18.65 | |
| Video-CCAM
QQMM |
14B | 32 | 2024-07-16 | 53.42 | 54.50 | 63.28 | 73.73 | 63.73 | 57.76 | 47.35 | 50.93 | 41.87 | 48.44 | 26.94 | |
| VideoLLaMA 2
Alibaba |
7B | 32 | 2024-08-29 | 52.58 | 59.95 | 60.16 | 62.97 | 60.46 | 54.66 | 46.11 | 41.67 | 46.75 | 48.16 | 34.72 | |
| Rank | Model | LLM Params |
Frames | Date | Overall (%) | Omni-Source Understanding (%) | |||
|---|---|---|---|---|---|---|---|---|---|
| ER | SCU | SD | MA | ||||||
| Gemini 1.5 Pro
|
- | 1 fps | 2024-06-15 | 67.80 | 52.40 | 50.80 | 80.40 | 87.60 | |
|
MiniCPM-o 2.6
OpenBMB |
8B | 60 | 2025-01-14 | 53.40 | 48.40 | 24.40 | 63.20 | 77.60 | |
| GPT-4o
OpenAI |
- | 60 | 2024-06-15 | 50.95 | 53.60 | 32.40 | 49.00 | 68.80 | |
| InternLM-XC2.5-OL
Shanghai AI Lab |
7B | 64 | 2024-12-12 | 46.20 | 45.20 | 30.40 | 48.40 | 60.80 | |
| InternVL-V2
Shanghai AI Lab |
8B | 32 | 2024-07-18 | 42.73 | 44.80 | 28.11 | 47.20 | 50.80 | |
| LLaVA-NeXT-Video
Bytedance & NTU S-Lab |
32B | 32 | 2024-05-10 | 41.73 | 41.60 | 24.50 | 44.40 | 56.40 | |
| Claude 3.5 Sonnet
Anthropic |
- | 20 | 2024-07-30 | 41.40 | 39.60 | 35.60 | 34.40 | 56.00 | |
| LLaVA-OneVision
Bytedance & NTU S-Lab |
7B | 32 | 2024-08-08 | 40.83 | 41.20 | 26.10 | 43.20 | 52.80 | |
| VITA-1.5
NJU |
7B | 16 | 2025-01-03 | 40.80 | 42.80 | 28.40 | 39.60 | 52.40 | |
| Qwen2-VL
Alibaba |
7B | 0.2-1 fps | 2024-07-16 | 40.73 | 40.80 | 25.30 | 41.20 | 55.60 | |
| MiniCPM-V 2.6
OpenBMB |
8B | 64 | 2024-08-12 | 40.23 | 42.00 | 27.71 | 40.40 | 50.80 | |
| Kangaroo
Meituan & UCAS |
7B | 64 | 2024-07-23 | 40.04 | 40.80 | 34.14 | 40.00 | 45.20 | |
| VILA-1.5
NVIDIA & MIT |
8B | 14 | 2024-07-21 | 37.53 | 40.40 | 28.51 | 37.20 | 44.00 | |
| LongVA
NTU S-Lab |
7B | 128 | 2024-06-25 | 35.93 | 41.20 | 28.51 | 32.00 | 42.00 | |
| Video-LLaMA2
DAMO NLP |
7B | 32 | 2024-08-29 | 35.92 | 43.60 | 23.29 | 35.20 | 41.60 | |
| Video-CCAM
QQMM |
14B | 32 | 2024-07-16 | 32.22 | 38.00 | 21.29 | 31.20 | 38.40 | |
| Rank | Model | LLM Params |
Frames | Date | Overall (%) | Contextual Understanding (%) | |||
|---|---|---|---|---|---|---|---|---|---|
| MCU | ACU | SQA | PO | ||||||
| Gemini 1.5 Pro
|
- | 1 fps | 2024-06-15 | 51.06 | 42.40 | 52.80 | 59.20 | 45.10 | |
| GPT-4o
OpenAI |
- | 60 | 2024-06-15 | 47.94 | 42.80 | 50.40 | 52.40 | 39.22 | |
|
MiniCPM-o 2.6
OpenBMB |
8B | 60 | 2025-01-14 | 38.45 | 38.00 | 36.80 | 42.40 | 29.41 | |
| Claude 3.5 Sonnet
Anthropic |
- | 20 | 2024-07-30 | 37.83 | 43.20 | 36.00 | 34.80 | 35.29 | |
| VITA-1.5
NJU |
7B | 16 | 2025-01-03 | 35.83 | 32.00 | 33.60 | 44.00 | 25.49 | |
| LLaVA-NeXT-Video
Bytedance & NTU S-Lab |
32B | 32 | 2024-05-10 | 34.29 | 28.80 | 34.27 | 44.00 | 13.64 | |
| InternVL-V2
Shanghai AI Lab |
8B | 32 | 2024-07-18 | 34.10 | 27.20 | 35.08 | 42.80 | 20.45 | |
| InternLM-XC2.5-OL
Shanghai AI Lab |
7B | 64 | 2024-12-12 | 33.58 | 38.00 | 28.80 | 38.00 | 13.73 | |
| MiniCPM-V 2.6
OpenBMB |
8B | 64 | 2024-08-12 | 33.39 | 27.20 | 37.50 | 40.00 | 11.11 | |
| Qwen2-VL
Alibaba |
7B | 0.2-1 fps | 2024-08-19 | 33.08 | 26.40 | 34.27 | 44.40 | 4.55 | |
| Kangaroo
Meituan & UCAS |
7B | 64 | 2024-07-23 | 31.18 | 32.40 | 35.89 | 30.80 | 4.00 | |
| LLaVA-OneVision
Bytedance & NTU S-Lab |
7B | 32 | 2024-08-08 | 30.96 | 30.40 | 35.08 | 30.00 | 18.18 | |
| LongVA
NTU S-Lab |
7B | 128 | 2024-06-25 | 30.21 | 28.00 | 33.47 | 34.40 | 4.55 | |
| VILA-1.5
NVIDIA & MIT |
8B | 14 | 2024-07-21 | 26.66 | 28.00 | 29.03 | 26.00 | 11.76 | |
| Video-CCAM
QQMM |
14B | 32 | 2024-07-16 | 24.06 | 22.80 | 26.21 | 27.60 | 2.27 | |
| Video-LLaMA2
DAMO NLP |
7B | 32 | 2024-08-29 | 23.69 | 26.00 | 28.23 | 21.20 | 2.27 | |
* Experiment Setting: 60 seconds of context preceding the query time
Visualization
Data Statistics
| Option | Count | Percentage |
|---|
| Category | Count | Percentage |
|---|
Question Length Distribution
Minimum length: 4 words
Maximum length: 34 words
Average length: 11.57 words
Options Length Distribution
Citation
@article{lin2024streaming,
title={StreamingBench: Assessing the Gap for MLLMs to Achieve Streaming Video Understanding},
author={Junming Lin and Zheng Fang and Chi Chen and Zihao Wan and Fuwen Luo and Peng Li and Yang Liu and Maosong Sun},
journal={arXiv preprint arXiv:2411.03628},
year={2024}
}