| CARVIEW |
Select Language
HTTP/2 301
server: GitHub.com
content-type: text/html
location: https://yasserben.github.io/FLOSS/
access-control-allow-origin: *
strict-transport-security: max-age=31556952
expires: Mon, 29 Dec 2025 22:39:19 GMT
cache-control: max-age=600
x-proxy-cache: MISS
x-github-request-id: 1B92:444BC:9684A3:A8D4D7:695300BE
accept-ranges: bytes
age: 0
date: Mon, 29 Dec 2025 22:29:19 GMT
via: 1.1 varnish
x-served-by: cache-bom-vanm7210098-BOM
x-cache: MISS
x-cache-hits: 0
x-timer: S1767047359.183549,VS0,VE202
vary: Accept-Encoding
x-fastly-request-id: cec44b245a856fe0804816db99b5d7fae4920de5
content-length: 162
HTTP/2 200
server: GitHub.com
content-type: text/html; charset=utf-8
last-modified: Mon, 17 Nov 2025 18:16:56 GMT
access-control-allow-origin: *
strict-transport-security: max-age=31556952
etag: W/"691b6698-24e9"
expires: Mon, 29 Dec 2025 22:39:19 GMT
cache-control: max-age=600
content-encoding: gzip
x-proxy-cache: MISS
x-github-request-id: B5E2:2916CC:96BB78:A90CE5:695300BF
accept-ranges: bytes
age: 0
date: Mon, 29 Dec 2025 22:29:19 GMT
via: 1.1 varnish
x-served-by: cache-bom-vanm7210098-BOM
x-cache: MISS
x-cache-hits: 0
x-timer: S1767047359.399564,VS0,VE206
vary: Accept-Encoding
x-fastly-request-id: a3cd18cf7365105b44a6fe06edf7cc3286ee3db7
content-length: 2676
FLOSS: Free Lunch in Open-vocabulary Semantic Segmentation
FLOSS: Free Lunch in Open-vocabulary Semantic Segmentation
1Inria
2Valeo.ai
TL;DR
- Focus: We challenge the conventional use of multiple templates in Open-Vocabulary Semantic Segmentation (OVSS) models.
- Key Finding: For each class, there exist single-template classifiers that significantly outperform the conventional averaged classifier.
- Our Approach: We propose FLOSS, a plug-and-play method that:
- Identifies class-expert templates using prediction entropy
- Requires no labels or additional training
- Is complementary to existing OVSS methods
- Results: FLOSS consistently improves state-of-the-art methods on various OVSS benchmarks and generalizes well across datasets with distribution shifts.
Method
Recent Open-Vocabulary Semantic Segmentation (OVSS) models extend the CLIP model to segmentation while maintaining the use of multiple templates for constructing class-wise averaged text embeddings. Our method, FLOSS, challenges this approach by:
- Identifying single-template classifiers that outperform averaged classifiers
- Estimating class-experts using prediction entropy on unlabeled images
- Implementing a novel fusion method for more accurate OVSS predictions
- Providing improvements without requiring labels or additional training
Acknowledgements
This research was partially funded by the French Agence Nationale de la Recherche (ANR) with the project SIGHT (ANR-20-CE23-0016). We sincerely thank Telecom Paris for providing the resources necessary to run our experiments and Nacereddine Laddaoui for his invaluable help with infrastructure. We are also grateful to Ivan Lopes for proofreading.
BibTeX
@misc{benigmim2025flossfreelunchopenvocabulary,
title={FLOSS: Free Lunch in Open-vocabulary Semantic Segmentation},
author={Yasser Benigmim and Mohammad Fahes and Tuan-Hung Vu and Andrei Bursuc and Raoul de Charette},
year={2025},
eprint={2504.10487},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2504.10487},
}