| CARVIEW |
Select Language
Decoding-based Regression
Xingyou Song*, Dara Bahri*
Transactions on Machine Learning Research (TMLR) 2025
Paper:
[arXiv]
[TMLR]
[Code]
External Media/References: [MarkTechPost]
Understanding LLM Embeddings for Regression
Eric Tang, Bangding Yang, Xingyou Song
Transactions on Machine Learning Research (TMLR) 2025
Paper:
[arXiv]
[TMLR]
External Media/References: [MarkTechPost] [BAAI]
Open Source Vizier: Google's Optimizer
-
Open Source Vizier: Distributed Infrastructure and API for Reliable and Flexible Blackbox OptimizationXingyou Song, Sagi Perel, Chansoo Lee, Greg Kochanski, Daniel GolovinAutomated Machine Learning Conference (AutoML-Conf) Systems Track 2022Paper: [arXiv] [Google AI Blog] [AutoML-Conf] [PMLR] [Poster] Code: [Github] [PyPI] [Docs]
External Media/References: [Google Research 2022 Algorithms] [Deep Learning Tuning Playbook] [MarkTechPost] [Weights & Biases] [The Sequence] [Deep Learning Weekly] [Analytics India Magazine] [Electronic Smith] [gHacks] [ML News by Yannic Kilcher (Video)] [WebBigdata (Japanese)] [RandomAccess (Spanish)]
Presentations: [Slides] [AutoML-Conf 2022 Video] [AutoML Seminar Video] [AutoML-Conf 2023 Tutorial Video] -
The Vizier Gaussian Process Bandit AlgorithmXingyou Song, Qiuyi Zhang, Chansoo Lee, Emily Fertig, Tzu-Kuo Huang, Lior Belenkil, Greg Kochanski, Setareh Ariafar, Srinivas Vasudevan, Sagi Perel, Daniel GolovinGoogle DeepMind Technical Report 2024Paper: [arXiv]
External Media/References: [ChinaZ] [BAAI] [TuringPost] [DAIR.AI] [NLP Newsletter] [AIModels.FYI] [Open Data Science] [Appy Pie]
Presentations: [Slides] [BAAI Talk]
OptFormer Project: Language Modeling for Optimization
-
Towards Learning Universal Hyperparameter Optimizers with TransformersYutian Chen, Xingyou Song, Chansoo Lee, Zi Wang, Qiuyi Zhang, David Dohan, Kazuya Kawakami, Greg Kochanski, Arnaud Doucet, Marc'aurelio Ranzato, Sagi Perel, Nando de FreitasNeural Information Processing Systems (NeurIPS) 2022Paper: [arXiv] [Code] [Google AI Blog] [US Patent] [Poster]
External Media/References: [Tensorflow Transformer Tutorial] [Vevesta Labs] [Accenture Federal Viewpoints] [MarkTechPost] [The Evolving Enterprise] [LogicTech World] [Analytics Vidhya] [Same OG] [Tech News Crypt] [The Perfectech] [IANoticas (Spanish)] [MundoXDigital (Spanish)] [Digizom (Spanish)] [DataLearner (Chinese)] [HubAI (Chinese)] [AI Times (Korean)] [Web Big Data (Japanese)]
Slides: [OptFormer Slides] [LLMs for Optimization Slides]
Talk Videos: [ML Collective] [AutoML Seminar] [AutoML-Conf 2023 Tutorial]
Language Model Embeddings Can Be Sufficient for Bayesian Optimization
Tung Nguyen, Qiuyi Zhang, Bangding Yang, Chansoo Lee, Jorg Bornschein, Yingjie Miao, Sagi Perel, Yutian Chen, Xingyou Song
Google DeepMind Technical Report 2024
Paper:
[arXiv]
[Code]
External Media/References: [MarkTechPost]
Position: Leverage Foundational Models for Black-Box Optimization
Xingyou Song, Yingtao Tian, Robert Tjarko Lange, Chansoo Lee, Yujin Tang, Yutian Chen
International Conference on Machine Learning (ICML) 2024
Paper:
[arXiv]
[Poster]
External Media/References: [TuringPost] [Eye on AI] [TransferLab]
Reinforcement Learning and Robotics
-
Discovering Adaptable Symbolic Algorithms from ScratchStephen Kelly, Daniel S. Park, Xingyou Song, Mitchell McIntire, Pranav Nashikkar, Ritam Guha, Wolfgang Banzhaf, Kalyanmoy Deb, Vishnu Naresh Boddeti, Jie Tan, Esteban RealInternational Conference on Intelligent Robots and Systems (IROS) 2023 (Best Overall Paper Finalist, Top 12/2760 of Submissions)Paper: [arXiv] [Video] [Poster]
External Media/References: [HuggingFace Daily Papers]
Rapidly Adaptable Legged Robots via Evolutionary Meta-Learning
Xingyou Song*, Yuxiang Yang*, Krzysztof Choromanski, Ken Caluwaerts, Wenbo Gao, Chelsea Finn, Jie Tan
International Conference on Intelligent Robots and Systems (IROS) 2020
ES-MAML: Simple Hessian-Free Meta Learning
Xingyou Song*, Wenbo Gao*, Yuxiang Yang, Krzysztof Choromanski, Aldo Pacchiano, Yunhao Tang
International Conference on Learning Representations (ICLR) 2020
Neural Information Processing Systems (NeurIPS) 2019, Workshop on Meta-Learning (Spotlight)
External Media:
[AITechBaseCamp (Chinese)]
Observational Overfitting in Reinforcement Learning
Xingyou Song, Yiding Jiang, Stephen Tu, Yilun Du, Behnam Neyshabur
International Conference on Learning Representations (ICLR) 2020
Automated Reinforcement Learning (AutoRL): A Survey and Open Problems
(a) Jack Parker-Holder*, Raghu Rajan*, Xingyou Song*, André Biedenkapp, Yingjie Miao, Theresa Eimer, Baohe Zhang, Vu Nguyen, Roberto Calandra, Aleksandra Faust, Frank Hutter, Marius Lindauer
Journal of Artificial Intelligence Research (JAIR) 2022
Automated Machine Learning Conference (AutoML-Conf) Journal Track 2023
Differentiable Architecture Search for Reinforcement Learning
Yingjie Miao*, Xingyou Song*, John D. Co-Reyes, Daiyi Peng, Summer Yue, Eugene Brevdo, Aleksandra Faust
Automated Machine Learning Conference (AutoML-Conf) 2022
ES-ENAS: Efficient Evolutionary Optimization for Large Hybrid Search Spaces
Xingyou Song, Krzysztof Choromanski, Jack Parker-Holder, Yunhao Tang, Qiuyi Zhang, Daiyi Peng, Deepali Jain, Wenbo Gao, Aldo Pacchiano, Tamas Sarlos, Yuxiang Yang
International Conference on Learning Representations (ICLR) 2020, Workshop on Neural Architecture Search
Robotic Table Tennis with Model-Free Reinforcement Learning
Wenbo Gao*, Laura Graesser*, Krzysztof Choromanski*, Xingyou Song, Nevena Lazic, Pannag Sanketi, Vikas Sindhwani, Navdeep Jaitly
International Conference on Intelligent Robots and Systems (IROS) 2020
Efficient Transformers and Attention
-
Rethinking Attention with PerformersKrzysztof Choromanski*, Valerii Likhosherstov*, David Dohan*, Xingyou Song*, Andreea Gane*, Tamas Sarlos*, Peter Hawkins*, Jared Davis*, Afroz Mohiuddin, Lukasz Kaiser, David Belanger, Lucy Colwell, Adrian WellerInternational Conference on Learning Representations (ICLR) 2021 (Oral, Top 2% of Submissions)Paper: [arXiv] [ICLR] [Google AI Blog] [Slides] Code: [Protein LM Code] [Performer Code]
External Media/Blogposts: [Forbes] [Google Research 2022] [Hopfield Networks (ICLR Blog Track)] [Schmidhuber AI Blog] [HuggingFace] [Kerasmitas] [IARAI] [Hopfield Networks] [InfoQ] [TowardsDataScience] [AIM] [Eyerys] [TeddyKoker] [ExBulletin] [MarkTechPost] [Synced (v2)] [Synced (v1)] [VentureBeat] [LinkResearcher (Chinese)] [Zhuanlan (Chinese)] [KeXue (Chinese)] [MDLI (Hebrew)] [MIT Press (Sec 15.6)] [Google Research 2020]
Forums: [Hacker News (YCombinator)] [Paper Explained (Reddit)] [FAVOR Explained (Reddit)]
Talk Videos: [LightOnAI] [IARAI Fireside Chat]
External Videos: [Paper Explained] [High Performance NLP] [BiliBili (Chinese)] -
Hardness of Low Rank Approximation of Entrywise Transformed Matrix Products(a) Tamas Sarlos, Xingyou Song, David Woodruff, Qiuyi ZhangNeural Information Processing Systems (NeurIPS) 2023[arXiv] [NeurIPS]
-
Unlocking Pixels for Reinforcement Learning via Implicit AttentionKrzysztof Choromanski*, Deepali Jain*, Wenhao Yu*, Xingyou Song, Jack Parker-Holder, Tingnan Zhang, Valerii Likhosherstov, Aldo Pacchiano, Anirban Santara, Yunhao Tang, Jie Tan, Adrian Weller.
-
Sub-Linear Memory: How to Make Performers SLiMValerii Likhosherstov, Krzysztof Choromanski, Jared Davis, Xingyou Song, Adrian WellerNeural Information Processing Systems (NeurIPS) 2021
Miscellaneous
-
Gradientless Descent: High-Dimensional Zeroth-Order Optimization(a) Daniel Golovin, John Karro, Greg Kochanski, Chansoo Lee, Xingyou Song, Qiuyi ZhangInternational Conference on Learning Representations (ICLR) 2020 (Spotlight, Top 6% of Submissions)
-
Debiasing First-order Heuristic for Approximate Bi-level OptimizationValerii Likhosherstov*, Xingyou Song*, Krzysztof Choromanski, Jared Davis, Adrian WellerInterntional Conference on Machine Learning (ICML) 2021
-
An Ode to an ODEKrzysztof Choromanski*, Jared Quincy Davis*, Valerii Likhosherstov*, Xingyou Song, Jean-Jacques Slotine, Jacob Varley, Honglak Lee, Adrian Weller, Vikas SindhwaniNeural Information Processing Systems (NeurIPS) 2020
-
Stochastic Flows and Geometric Optimization on the Orthogonal GroupKrzysztof Choromanski*, David Cheikhi*, Jared Davis*, Valerii Likhosherstov*, Achille Nazaret*, Achraf Bahamou*, Xingyou Song*, et al.International Conference on Machine Learning (ICML) 2020