| CARVIEW |
Select Language
HTTP/2 200
content-type: text/html
x-guploader-uploadid: AHVrFxOo9lVCJXFDMUqdkQVa_TreyolUkw6AVQEevoe645g4WdBFyBP5Jo9xX5aZtkQELMSe4xHSsyg
expires: Mon, 29 Dec 2025 06:37:22 GMT
date: Mon, 29 Dec 2025 05:37:22 GMT
cache-control: public, max-age=3600
last-modified: Mon, 04 Jan 2021 23:28:24 GMT
etag: "c3ff7c5a11d6f2fe0a355ef446a09e48"
x-goog-generation: 1609802904985764
x-goog-metageneration: 2
x-goog-stored-content-encoding: identity
x-goog-stored-content-length: 5867
x-goog-hash: crc32c=R3f2YQ==
x-goog-hash: md5=w/98WhHW8v4KNV70RqCeSA==
x-goog-storage-class: MULTI_REGIONAL
accept-ranges: bytes
content-length: 5867
server: UploadServer
alt-svc: h3=":443"; ma=2592000,h3-29=":443"; ma=2592000
Jonathan Ho
Jonathan Ho
I received my PhD in computer science from UC Berkeley in 2020, advised by Pieter Abbeel.
My research interests are unsupervised learning and reinforcement learning.
Preprints
-
Axial attention in multidimensional transformersJonathan Ho*, Nal Kalchbrenner*, Dirk Weissenborn, Tim Salimans
-
Natural image manipulation for autoregressive models using Fisher scoresWilson Yan, Jonathan Ho, Pieter Abbeel
-
Evolution strategies as a scalable alternative to reinforcement learningTim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, Ilya Sutskever
Publications
-
Denoising diffusion probabilistic modelsJonathan Ho, Ajay Jain, Pieter AbbeelNeural Information Processing Systems, 2020
-
Compression with flows via local bits-back codingJonathan Ho, Evan Lohn, Pieter AbbeelNeural Information Processing Systems, 2019
-
Flow++: Improving flow-based generative models with variational dequantization and architecture designJonathan Ho*, Xi Chen*, Aravind Srinivas, Yan Duan, Pieter AbbeelInternational Conference on Machine Learning, 2019
-
Bit-Swap: Recursive bits-back coding for lossless compression with hierarchical latent variablesFriso H. Kingma, Pieter Abbeel, Jonathan HoInternational Conference on Machine Learning, 2019
-
Evolved policy gradientsRein Houthooft, Richard Y. Chen, Phillip Isola, Bradly C. Stadie, Filip Wolski, Jonathan Ho, Pieter AbbeelNeural Information Processing Systems, 2018
-
Meta learning shared hierarchiesKevin Frans, Jonathan Ho, Xi Chen, Pieter Abbeel, John SchulmanInternational Conference on Learning Representations, 2018
-
One-shot imitation learningYan Duan, Marcin Andrychowicz, Bradly Stadie, Jonathan Ho, Jonas Schneider, Ilya Sutskever, Pieter Abbeel, Wojciech ZarembaNeural Information Processing Systems, 2017
-
Generative adversarial imitation learningJonathan Ho, Stefano ErmonNeural Information Processing Systems, 2016
-
Model-free imitation learning with policy optimizationJonathan Ho, Jayesh K. Gupta, Stefano ErmonInternational Conference on Machine Learning, 2016
-
Generalization in robotic manipulation through the use of non-rigid registrationJohn Schulman, Jonathan Ho, Cameron Lee, Pieter AbbeelInternational Symposium on Robotics Research, 2013
-
Finding locally optimal, collision-free trajectories with sequential convex optimizationJohn Schulman, Jonathan Ho, Alex Lee, Ibrahim Awwal, Henry Bradlow, Pieter AbbeelRobotics: Science and Systems, 2013
-
Tracking deformable objects with point cloudsJohn Schulman, Alex Lee, Jonathan Ho, Pieter AbbeelInternational Conference on Robotics and Automation, 2013