HTTP/2 301
server: GitHub.com
content-type: text/html
location: https://ptrckprz.github.io/data/
access-control-allow-origin: *
strict-transport-security: max-age=31556952
expires: Mon, 29 Dec 2025 22:02:27 GMT
cache-control: max-age=600
x-proxy-cache: MISS
x-github-request-id: C01E:3946E9:94AA63:A6E9D3:6952F81B
accept-ranges: bytes
age: 0
date: Mon, 29 Dec 2025 21:52:27 GMT
via: 1.1 varnish
x-served-by: cache-bom-vanm7210087-BOM
x-cache: MISS
x-cache-hits: 0
x-timer: S1767045148.781688,VS0,VE201
vary: Accept-Encoding
x-fastly-request-id: 2384f3b88d1810e10a7c5b41fc8094e071d04761
content-length: 162
HTTP/2 200
server: GitHub.com
content-type: text/html; charset=utf-8
last-modified: Fri, 24 Oct 2025 16:55:47 GMT
access-control-allow-origin: *
strict-transport-security: max-age=31556952
etag: W/"68fbaf93-31ac"
expires: Mon, 29 Dec 2025 22:02:28 GMT
cache-control: max-age=600
content-encoding: gzip
x-proxy-cache: MISS
x-github-request-id: 4D07:292AC1:95723F:A7B261:6952F81A
accept-ranges: bytes
age: 0
date: Mon, 29 Dec 2025 21:52:28 GMT
via: 1.1 varnish
x-served-by: cache-bom-vanm7210087-BOM
x-cache: MISS
x-cache-hits: 0
x-timer: S1767045148.995979,VS0,VE218
vary: Accept-Encoding
x-fastly-request-id: be6177faac1c747c189ce776a25c92f02d2ba98d
content-length: 4108
Code & data - Patrick Pérez’s page Code
- BiB: Active learning strategies for weakly-supervised object detection (ECCV’22)
- STEEX: Steering Counterfactual Explanations with Semantics (ECCV’22)
- CAB: Raising Context Awareness in Motion Forecasting (workshop CVPR’22)
- MuHDi: Multi-head distillation for continual unsupervised domain adaptation in semantic segmentation (CLVision’22)
- RADIal: HR radar dataset (+ camera & lidar) for vehicle and free space detection (CVPR’22)
- LOST: Object localization with self-supervised transformers (BMVC’21)
- MTAF: Multi-Target Adversarial Frameworks for domain adaptation (ICCV’21)
- MVRSS: Multi-view radar semantic segmentation (ICCV’21)
- ObsNet: Out-Of-Distribution detection by learning from local adversarial attacks in semantic segmentation (ICCV’21)
- Semantic Palette: Guiding scene generation with class proportions (CVPR’21)
- Attributes with Fields: Detecting 32 pedestrian attributes with composite fields (preprint’20 with EPFL)
- OBoW: Online BoW generation for unsupervised representation learning (CVPR 2021)
- DummyNet: Artificial Dummies for Urban Dataset Augmentation (AAAI’21)
- ESL: Entropy-guided Self-supervised Learning for Domain Adaptation in Semantic Segmentation (CVPRw’20)
- AdamSRT: Adam exploiting BN-induced pherical invariance of CNN (arXiv 2020)
- xMUDA: Cross-modal UDA for 3D semantic segmentation (CVPR’20)
- ZS3: Zero-Shot Semantic Segmentation (NeurIPS’19)
- BF3S: Boosting few-shot visual learning with self-supervision (ICCV’19)
- rOSD: Unsupervised object discovery at scale (ECCV’20) - Matlab
- ConfidNet: Addressing failure prediction by learning model confidence (NeurIPS’19) - PyTorch
- DADA: Depth-aware Domain Adaptation in Semantic Segmentation (ICCV’19) - coming soon
- AdvEnt: Adversarial Entropy minimization for domain adaptation in semantic segmentation (CVPR’19) - PyTorch
- SoDeep: Sorting Deep Net to learn ranking loss surrogates (CVP’19) - PyTorch
- OSD: Unsupervised object discovery as optimization (CVPR’19) - Matlab
- DSVE-loc: Deep Semantic Visual Embedding with Localization (CVPR’18) - PyTorch
- SuBic: Supervised Binary Codes (ICCV’17) - Python
- ROAM: Rich Online Appearance Model (CPVR’17) - C++, using OpenCV 3.0
- SLEM: Square Loss Exemplar Machines (CVPR’17) - Matlab
- VLAD: Vector of Locally Aggregated Descriptors (CVPR’10) - Matlab, using Yael
- VideoInpaint: Patch-based video inpainting (SIAM J. Imaging Science 2014) - Matlab
Data
- Woodscape: Driving fisheye multi-task dataset
- CARRADA: Camera and Automotive Radar with Range-Angle-Doppler Annotations dataset
- TSFT: Face tubes from TV series (589 cropped annotated face tubes of 94 subjects)
- Hannah: Dense person annotation of Woody Allen’s Hannah and her sisters
- Scratch: Annotated data on scractch detection for movie restoration
- VideoInpainting: Videos and objects’ masks for object inpainting