Exporters From Japan
Wholesale exporters from Japan   Company Established 1983
CARVIEW
Select Language

Accepted Papers

Accepted Papers

Accepted Papers on Openreview
Spotlight Presentations

Morning Session

  • Efficient Language Model Architectures for Differentially Private Federated Learning. Jae Hun Ro, Srinadh Bhojanapalli, Zheng Xu, Yanxiang Zhang, Ananda Theertha Suresh.
  • DNA: Differential privacy Neural Augmentation for contact tracing. Rob Romijnders, Christos Louizos, Yuki M Asano, Max Welling.
  • PrE-Text: Training Language Models on Private Federated Data in the Age of LLMs. Charlie Hou, Akshat Shrivastava, Hongyuan Zhan, Rylan Conway, Trang Le, Adithya Sagar, Giulia Fanti, Daniel Lazar.

Afternoon Session

  • Langevin Unlearning. Eli Chien, Haoyu Peter Wang, Ziang Chen, Pan Li.
  • FairProof : Confidential and Certifiable Fairness for Neural Networks. Chhavi Yadav, Amrita Roy Chowdhury, Dan Boneh, Kamalika Chaudhuri.
  • Having your Privacy Cake and Eating it Too: Platform-supported Auditing of Social Media Algorithms for Public Interest. Basileal Yoseph Imana, Aleksandra Korolova, John Heidemann.
Poster Presentations
  • Balancing Privacy and Performance for Private Federated Learning Algorithms. Xiangjian Hou, Sarit Khirirat, Mohammad Yaqub, Samuel Horváth.
  • Having your Privacy Cake and Eating it Too: Platform-supported Auditing of Social Media Algorithms for Public Interest. Basileal Yoseph Imana, Aleksandra Korolova, John Heidemann.
  • FairProof : Confidential and Certifiable Fairness for Neural Networks. Chhavi Yadav, Amrita Roy Chowdhury, Dan Boneh, Kamalika Chaudhuri.
  • Subsampling is not Magic: Why Large Batch Sizes Work for Differentially Private Stochastic Optimisation. Ossi Räisä, Joonas Jälkö, Antti Honkela.
  • Personalized Differential Privacy for Ridge Regression. Krishna Acharya, Franziska Boenisch, Rakshit Naidu, Juba Ziani.
  • Efficient Private Federated Non-Convex Optimization With Shuffled Model. Lingxiao Wang, Xingyu Zhou, Kumar Kshitij Patel, Lawrence Tang, Aadirupa Saha.
  • Communication Efficient Differentially Private Federated Learning Using Second-Order Information. Mounssif Krouka, Antti Koskela, Tejas Kulkarni.
  • Data Forging Is Harder Than You Think. Mohamed Suliman, Swanand Kadhe, Anisa Halimi, Douglas Leith, Nathalie Baracaldo, Ambrish Rawat.
  • Confidential-DPproof : Confidential Proof of Differentially Private Training. Ali Shahin Shamsabadi, Gefei Tan, Tudor Ioan Cebere, Aurélien Bellet, Hamed Haddadi, Nicolas Papernot, Xiao Wang, Adrian Weller.
  • WAVES: Benchmarking the Robustness of Image Watermarks. Tahseen Rabbani, Bang An, Mucong Ding, Aakriti Agrawal, Yuancheng Xu, Chenghao Deng, Sicheng Zhu, Abdirisak Mohamed, Yuxin Wen, Tom Goldstein, Furong Huang.
  • Posterior Probability-based Label Recovery Attack in Federated Learning. Rui Zhang, Song Guo, Ping Li.
  • Differentially Private Latent Diffusion Models. Saiyue Lyu, Michael F Liu, Margarita Vinaroz, Mijung Park.
  • Gradient-Congruity Guided Federated Sparse Training. Chris XING TIAN, Yibing Liu, Haoliang Li, Ray C.C. Cheung, Shiqi Wang.
  • Privacy-Perserving Data Release Leveraging Optimal Transport and Particle Gradient Descent. Konstantin Donhauser, Javier Abad, Neha Hulkund, Fanny Yang.
  • Understanding Practical Membership Privacy of Deep Learning. Marlon Tobaben, Gauri Pradhan, Yuan He, Joonas Jälkö, Antti Honkela.
  • Langevin Unlearning. Eli Chien, Haoyu Peter Wang, Ziang Chen, Pan Li.
  • Linearizing Models for Efficient yet Robust Private Inference. Sreetama Sarkar, Souvik Kundu, Peter Anthony Beerel.
  • Online Experimentation under Privacy Induced Identity Fragmentation. Shiv Shankar, Ritwik Sinha, Madalina Fiterau.
  • PrE-Text: Training Language Models on Private Federated Data in the Age of LLMs. Charlie Hou, Akshat Shrivastava, Hongyuan Zhan, Rylan Conway, Trang Le, Adithya Sagar, Giulia Fanti, Daniel Lazar.
  • Differentially Private Best Subset Selection Via Integer Programming. Kayhan Behdin, Peter Prastakos, Rahul Mazumder. [Poster] [Slides] [Talk]
  • Fed Up with Complexity: Simplifying Many-Task Federated Learning with NTKFedAvg. Aashiq Muhamed, Meher Mankikar, Virginia Smith. [Poster]
  • Cache Me If You Can: The Case For Retrieval Augmentation in Federated Learning. Aashiq Muhamed, Pratiksha Thaker, Mona T. Diab, Virginia Smith. [Poster]
  • Byzantine Robustness and Partial Participation Can Be Achieved Simultaneously: Just Clip Gradient Differences. Grigory Malinovsky, Eduard Gorbunov, Samuel Horváth, Peter Richtárik.
  • DNA: Differential privacy Neural Augmentation for contact tracing. Rob Romijnders, Christos Louizos, Yuki M Asano, Max Welling. [Poster] [Slides]
  • Federated Unlearning: a Perspective of Stability and Fairness. Jiaqi Shao, Tao Lin, Xuanyu Cao, Bing Luo.
  • Guarding Multiple Secrets: Enhanced Summary Statistic Privacy for Data Sharing. Shuaiqi Wang, Rongzhe Wei, Mohsen Ghassemi, Eleonora Kreacic, Vamsi K. Potluru. [Poster]
  • Efficient Language Model Architectures for Differentially Private Federated Learning. Jae Hun Ro, Srinadh Bhojanapalli, Zheng Xu, Yanxiang Zhang, Ananda Theertha Suresh.
  • The Privacy Power of Correlated Noise in Decentralized Learning. Youssef Allouah, Anastasia Koloskova, Aymane El Firdoussi, Martin Jaggi, Rachid Guerraoui.

Organization

Workshop Organizers

carview.php?tsp=

Salman Avestimehr

University of Southern California / FedML
carview.php?tsp=

Tian Li

University of Chicago / Meta
carview.php?tsp=

Niloofar (Fatemeh) Mireshghallah

University of Washington
carview.php?tsp=

Sewoong Oh

University of Washington / Google
carview.php?tsp=

Florian Tramer

ETH Zurich
carview.php?tsp=

Zheng Xu

Google

Committee

Program Committee

  • Ahmed M. Abdelmoniem (Queen Mary University of London)
  • Alexandra Wood (Berkman Klein Center at Harvard)
  • Ali Shahin Shamsabadi (Brave Software)
  • Ambrish Rawat (IBM)
  • Amr Abourayya (Universität Duisburg-Essen)
  • Andrew Hard (Google)
  • Ang Li (University of Maryland College Park)
  • Anran Li (Nanyang Technological University)
  • Anshuman Suri (University of Virginia)
  • Aritra Mitra (North Carolina State University)
  • Arun Ganesh (Google)
  • Ashwinee Panda (Google)
  • Aurélien Bellet (INRIA)
  • Berivan Isik (Google)
  • Bing Luo (Duke Kunshan University)
  • Carlee Joe-Wong (Carnegie Mellon University)
  • Chuan Guo (Facebook AI Research)
  • Chuan Xu (INRIA)
  • Chulhee Yun (KAIST)
  • Chulin Xie (University of Illinois Urbana Champaign)
  • Dan Alistarh (Institute of Science and Technology)
  • Deepesh Data (University of California Los Angeles)
  • Dimitrios Dimitriadis (Amazon)
  • Divyansh Jhunjhunwala (Carnegie Mellon University)
  • Edwige Cyffers (INRIA)
  • Egor Shulgin (KAUST)
  • Emiliano De Cristofaro (University of California Riverside)
  • Evita Bakopoulou (University of California Irvine)
  • Fan Mo (Huawei Technologies Ltd.)
  • Galen Andrew (Google)
  • Gauri Joshi (Carnegie Mellon University)
  • Giulia Fanti (Carnegie Mellon University)
  • Giulio Zizzo (IBM)
  • Graham Cormode (Facebook)
  • Haibo Yang (Rochester Institute of Technology)
  • Hamed Haddadi (Imperial College London)
  • Jalaj Upadhyay (Rutgers University)
  • James Henry Bell (Google)
  • Jayanth Reddy Regatti (Ohio State University)
  • Jiachen T. Wang (Princeton University)
  • Jiankai Sun (ByteDance Inc.)
  • Jianyu Wang (Apple)
  • Jiayi Wang (University of Utah)
  • Jiayu Zhou (Michigan State University)
  • Jiayuan Ye (National University of Singapore)
  • Jinghui Chen (Pennsylvania State University)
  • Jinhyun So (Samsung)
  • John Nguyen (Facebook)
  • Kai Yi (KAUST)
  • Kaiyuan Zhang (Purdue University)
  • Kallista Bonawitz (Google)
  • Karthik Prasad (Facebook AI)
  • Ken Liu (Stanford University)
  • Kevin Hsieh (Microsoft)
  • Krishna Kanth Nakka (Huawei Technologies Ltd.)
  • Kumar Kshitij Patel (TTIC)
  • Lie He (EPFL)
  • Lun Wang (Google)
  • Lydia Zakynthinou (Northeastern University)
  • Mahdi Chehimi (Virginia Tech)
  • Martin Jaggi (EPFL)
  • Matthias Reisser (QualComm)
  • Mi Zhang (Ohio State University)
  • Michal Yemini (Bar-Ilan University)
  • Mikko A. Heikkilä (Telefonica Research)
  • Milad Nasr (Google)
  • Mingrui Liu (George Mason University)
  • Mónica Ribero (Google)
  • Nasimeh Heydaribeni (University of California San Diego)
  • Niloofar Mireshghallah (University of Washington)
  • Paulo Abelha Ferreira (Dell Technologies)
  • Peter Kairouz (Google)
  • Peter Richtárik (KAUST)
  • Radu Marculescu (University of Texas Austin)
  • Salim El Rouayheb (Rutgers University)
  • Se-Young Yun (KAIST)
  • Sebastian U Stich (CISPA)
  • Shanshan Wu (Google)
  • Shiqiang Wang (IBM)
  • Songze Li (Southeast University)
  • Stefanos Laskaridis (Brave Software)
  • Swanand Kadhe (IBM)
  • Tahseen Rabbani (University of Maryland College Park)
  • Wei-Ning Chen (Stanford University)
  • Xuechen Li (Stanford University)
  • Yae Jee Cho (Carnegie Mellon University)
  • Yang Liu (Tsinghua University)
  • Yangsibo Huang (Princeton University)
  • Yanning Shen (University of California Irvine)
  • Yi Zhou (IBM)
  • Yibo Jacky Zhang (Stanford University)
  • Zhaozhuo Xu (Rice University)
  • Zheng Xu (Google)

Sponsors

Sponsors

Google          Meta          FedML