OFFSET
0,1
COMMENTS
This is the probability that a randomly chosen Gaussian integer (e.g., -2 + 5i) is squarefree (Pegg, 2003). - Alonso del Arte, Dec 20 2013
The probability that two randomly selected Gaussian integers are relatively prime (Collins and Johnson, 1989). - Amiram Eldar, Nov 24 2023
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..10000
George E. Collins and Jeremy R. Johnson, The probability of relative primality of Gaussian integers, Symbolic and Algebraic Computation: International Symposium ISSAC'88 Rome, Italy, July 4-8, 1988 Proceedings, Springer Berlin Heidelberg, 1989, pp. 252-258.
Ed Pegg Jr., The Moebius Function, 2003.
Michael Penn, How often (Gaussian) integers are relatively prime, YouTube video, 2025.
Eric Weisstein's World of Mathematics, Gaussian Integer.
Eric Weisstein's World of Mathematics, Relatively Prime.
Eric Weisstein's World of Mathematics, Squarefree.
EXAMPLE
0.663700804613853460721431657617048691358...
MATHEMATICA
RealDigits[(6/Pi^2)/Catalan, 10, 100][[1]] (* Alonso del Arte, Dec 20 2013 *)
PROG
(PARI) 6/(Catalan*Pi^2) \\ G. C. Greubel, Aug 23 2018
(Magma) R:= RealField(100); 6/(Catalan(R)*Pi(R)^2); // G. C. Greubel, Aug 23 2018
CROSSREFS
KEYWORD
AUTHOR
Eric W. Weisstein, Sep 30 2003
STATUS
approved
