| CARVIEW |
Dirichlet series for a symmetric matrix
Let be the Möbius function
Train of thought leading from the zeta function to the Möbius function
(*start Mathematica 8*)
(*Start with Riemann zeta:*)
Zeta[s]
(*Take the logarithm:*)
Log[Zeta[s]]
(*Take the derivative:*)
D[Log[Zeta[s]], s]
Clear[s, c]
(*Generalize it:*)
Limit[Zeta[c] - Zeta[s]*Zeta[c]/Zeta[s + c - 1], c -> 1]
(*See that Zeta[s]*Zeta[c]/Zeta[s+c-1] is the Dirichlet generating \
function of:*)
Table[Limit[
Zeta[s]*Total[MoebiusMu[Divisors[n]]/Divisors[n]^(s - 1)]/n^c,
s -> 1], {n, 1, 12}]
(*Which in turn is the Dirichlet generating function of the rows or \
columns of the symmetric matrix:*)
nn = 32;
A = Table[
Table[If[Mod[n, k] == 0, k^ZetaZero[k], 0], {k, 1, nn}], {n, 1,
nn}];
B = Table[
Table[If[Mod[k, n] == 0, MoebiusMu[n]*n^ZetaZero[-n], 0], {k, 1,
nn}], {n, 1, nn}];
MatrixForm[N[A.B]]
(*For comparison,here is a plot of the von Mangoldt function from the \
matrix:*)
ListLinePlot[Total[N[A.B]/Range[nn]]]
(*end*)
The Möbius function times n
1, -2, -3, 0, -5, 6, -7, 0, 0, 10, -11, 0, -13, 14, 15, 0, -17, 0, -19, 0, 21, 22, -23, 0, 0, 26, 0, 0, -29, -30, -31, 0, 33, 34, 35, 0, -37, 38, 39, 0, -41, -42, -43, 0, 0, 46, -47, 0, 0, 0, 51, 0, -53, 0, 55, 0, 57, 58, -59, 0, -61, 62, 0, 0, 65, -66, -67, 0, 69, -70, -71, 0, -73, 74, 0, 0, 77, -78, -79, 0, 0, 82, -83, 0, 85, 86, 87, 0, -89, 0, 91, 0, 93, 94, 95, 0, -97, 0, 0, 0
Mathematica: MoebiusMu[Range[100]]*Range[100]
Keywords: core, sign, number theory
Magic series and Magic constants
Craig Knecht sent me an email explaining magic series and magic constants. The following program lists magic series that add up to certain constants using the TableForm command in Mathematica:
Mathematica 8:
(*program for reordering of integer partitions start*)
TableForm[
Table[Table[
IntegerPartitions[
magicConstant][[Flatten[
Position[
Table[Length[IntegerPartitions[magicConstant][[i]]], {i, 1,
Length[IntegerPartitions[magicConstant]]}],
order]]]], {magicConstant, 1, 12}], {order, 1, 12}]]
(*program for reordering of integer partitions end*)
By removing the integer partitions that contain duplicates we get magic series:
Mathematica 8:
(*program for listing magic series start*)
nn = 14;
A = Table[
Table[IntegerPartitions[
magicConstant][[Flatten[
Position[
Table[Length[IntegerPartitions[magicConstant][[i]]], {i, 1,
Length[IntegerPartitions[magicConstant]]}],
order]]]], {magicConstant, 1, nn}], {order, 1, nn}];
TableForm[
Table[Table[
Table[If[
Length[DeleteDuplicates[A[[n]][[k]][[j]]]] ==
Length[A[[n]][[k]][[j]]], A[[n]][[k]][[j]], “”], {j, 1,
Length[A[[n]][[k]]]}], {n, 1, k}], {k, 1, nn}]]
(*program for listing magic series end*)
Riemann zeta function on the critical line as a Fourier transform of exponential sawtooth function plus minus one
Riemann zeta function on the critical line as a Fourier transform of exponential sawtooth function plus minus one

The code does not work when copy pasted in this blogging platform,
so here is a link to Pastebin with some working code:
Mathematica:
scale = 1000000;
xres = .00001;
x = Exp[Range[0, Log[scale], xres]];
RealPart = Log[x]*FourierDST[-(SawtoothWave[x] – 1)*x^(-1/2)];
ImaginaryPart = Log[x]*FourierDCT[-(SawtoothWave[x] + 1)*x^(-1/2)];
datapointsdisplayed = 300;
ymin = -15;
ymax = 15;
g1 = ListLinePlot[
Sqrt[scale]*{RealPart[[1 ;; datapointsdisplayed]],
ImaginaryPart[[1 ;; datapointsdisplayed]]},
PlotRange -> {ymin, ymax}, DataRange -> {0, 68.00226987379779},
Filling -> Axis];
Show[Flatten[{g1,
Table[Graphics[{PointSize[0.013],
Point[{N[Im[ZetaZero[n]]], 0}]}], {n, 1, 16}]}],
ImageSize -> Large]
A visual interpretation of Riemann zeta zeros via the Fourier transform
Mathematica 8:
scale = 1000000;
xres = .001;
limit = 3000;
x = Exp[Range[0, Log[scale], xres]];
a = FourierDCT[(SawtoothWave[x])*x^(-1/2)];
b = -FourierDST[(SawtoothWave[x] – 1)*x^(-1/2)];
(*ListLinePlot[((SawtoothWave[x])*x^(-1/2))[[1;;limit]]]*)
gs = ListLinePlot[-((SawtoothWave[x] – 1)*x^(-1/2))[[1 ;; limit]],
PlotStyle -> RGBColor[1, 0, 1]];
gsine = ListLinePlot[
Table[Sin[Im[ZetaZero[1]] x], {x, 0, limit*xres, xres}]];
Show[gs, gsine, PlotRange -> {-1, 1}]
ListLinePlot[
Table[Sin[
Im[ZetaZero[1]] x]*(-((SawtoothWave[x] – 1)*x^(-1/2))), {x,
0.00001, limit*xres, xres}]]
Frequency interpretation of Riemann zeta zero via the Fourier transform:
The two curves multiplied:
I believe the sum of the latter should be zero in order for the
frequency of the sine curve to be equal to a Riemann zeta zero.
-
Subscribe
Subscribed
Already have a WordPress.com account? Log in now.
Integer Partitions
Magic Series
