Exporters From Japan
Wholesale exporters from Japan   Company Established 1983
CARVIEW
Select Language

How do CDMs work?

Download CDMs

Depth Quality Comparison

Kitchen Scene

RGB

RGB Image (D435)

Raw Depth

Raw Depth (D435)

CDM Depth

CDM-D435 Output

RGB

RGB Image (L515)

Raw Depth

Raw Depth (L515)

CDM Depth

CDM-L515 Output

Canteen Scene

RGB

RGB Image (D435)

Raw Depth

Raw Depth (D435)

CDM Depth

CDM-D435 Output

RGB

RGB Image (L515)

Raw Depth

Raw Depth (L515)

CDM Depth

CDM-L515 Output

Stack Bowls Scene

RGB

RGB Image (D435)

Raw Depth

Raw Depth (D435)

CDM Depth

CDM-D435 Output

Place Toothpaste Scene

RGB

RGB Image (D435)

Raw Depth

Raw Depth (D435)

CDM Depth

CDM-D435 Output

Point Cloud Quality Comparison

Interactive 3D visualization - Use mouse to rotate, scroll to zoom

Scene:
Camera:
Model A:
Model B:

Kitchen Scene - D435 Camera

*Point clouds are downsampled from 640x480 to 90000 points.

Loading...

Raw Depth Point Cloud

Loading...

Model A: CDM-D435

Loading...

Model B: CDM-L515

Depth Evaluation on the Hammer Dataset (Zero-Shot)

* denotes the model fine-tuning on the same synthesized data as CDMs.

Split Depth Model L1 ↓ RMSE ↓ AbsRel ↓ δ₀.₅ ↑ δ₁ ↑
D435
(IR Stereo)
CDM-D435 (Ours) 0.0258 0.0404 0.0312 0.9842 0.9951
CDM-L515 (Ours) 0.0182 0.0338 0.0217 0.9877 0.9956
PromptDA*(435) 0.0434 0.0666 0.0599 0.9459 0.9770
PromptDA*(515) 0.1830 0.2387 0.2750 0.8802 0.9186
PromptDA 0.0396 0.0691 0.0484 0.9503 0.9772
PriorDA 0.0388 0.0754 0.0461 0.9632 0.9880
Raw Depth 0.0550 0.1458 0.0708 0.9179 0.9543
L515
(D-ToF)
CDM-L515 (Ours) 0.0156 0.0297 0.0229 0.9754 0.9919
CDM-D435 (Ours) 0.0165 0.0349 0.0246 0.9613 0.9855
PromptDA*(515) 0.0235 0.0666 0.0349 0.9291 0.9730
PromptDA*(435) 0.0254 0.0438 0.0379 0.9234 0.9640
PromptDA 0.0207 0.0515 0.0304 0.9480 0.9699
PriorDA 0.0177 0.0385 0.0274 0.9502 0.9763
Raw Depth 0.0312 0.0813 0.0475 0.9098 0.9429

Depth Accuracy w.r.t Distance

To understand the working range of CDMs and help users effectively use them, we evaluated the depth accuracy of CDMs at various distances on the Hammer dataset. The results show that CDMs achieve high accuracy across different distances, with performance trends following the original camera capabilities while significantly reducing noise and errors.

Dataset Split:

D435 Split - Absolute Relative Error

D435 Split - L1 Error

Observations

  • Raw depth shows larger errors than manufacturer specifications (may be dataset bias)
  • CDMs maintain high accuracy within the camera's optimal working range
  • Performance trends follow the original camera capabilities while significantly reducing noise
  • Point Cloud Quality Comparison on ByteCameraDepth Dataset

    Interactive 3D visualization of CDM processed point clouds from ByteCameraDepth dataset

    Scene:
    Camera:

    *Point clouds are downsampled from 640x480 to 90000 points.

    Loading...

    Raw Depth Point Cloud

    Loading...

    CDM-D405 Point Cloud

    RGB Image

    RGB Image

    CDM Depth
    Camera Depth

    Camera Depth / CDM Depth

    Method Overview

    Neural Data Engine

    We model depth camera noise patterns to generate high-quality paired data from simulation for training CDMs.

    Scene Depth Generation
    Camera Depth Model

    Camera Depth Models (CDMs)

    CDMs process RGB images and noisy depth signals from specific depth cameras to produce high-quality, denoised metric depth.

    Citation

    @article{liu2025manipulation,
      title={Manipulation as in Simulation: Enabling Accurate Geometry Perception in Robots},
      author={Liu, Minghuan and Zhu, Zhengbang and Han, Xiaoshen and Hu, Peng and Lin, Haotong and 
              Li, Xinyao and Chen, Jingxiao and Xu, Jiafeng and Yang, Yichu and Lin, Yunfeng and 
              Li, Xinghang and Yu, Yong and Zhang, Weinan and Kong, Tao and Kang, Bingyi},
      journal={arXiv preprint},
      year={2025}
    }