Hello there! My name is Lizhi Yang. I am currently a Mechanical Engineering PhD candidate at Caltech AMBER Lab under the advisement of Prof. Aaron D. Ames. My research interests are in learning for robotics, control and robot safety. Apart from my research, I am engaged in STEM outreach, and was involved in groups such as Pioneers in Engineering. I have also worked at Samsara Inc. In life I am a tech enthusiast and sci-fi lover. If you are interested in talking with me, please feel free to contact me at the email at the bottom of the page!
Robot learning has produced remarkably effective “black-box” controllers for complex tasks such as dynamic locomotion on humanoids. Yet ensuring dynamic safety, i.e., constraint satisfaction, remains challenging for such policies. Reinforcement learning (RL) embeds constraints heuristically through reward engineering, and adding or modifying constraints requires retraining. Model-based approaches, like control barrier functions (CBFs), enable runtime constraint specification with formal guarantees but require accurate dynamics models. This paper presents SHIELD, a layered safety framework that bridges this gap by: (1) training a generative, stochastic dynamics residual model using real-world data from hardware rollouts of the nominal controller, capturing system behavior and uncertainties; and (2) adding a safety layer on top of the nominal (learned locomotion) controller that leverages this model via a stochastic discrete-time CBF formulation enforcing safety constraints in probability. The result is a minimally-invasive safety layer that can be added to the existing autonomy stack to give probabilistic guarantees of safety that balance risk and performance. In hardware experiments on an Unitree G1 humanoid, SHIELD enables safe navigation (obstacle avoidance) through varied indoor and outdoor environments using a nominal (unknown) RL controller and onboard perception.
Push recovery during locomotion will facilitate the deployment of humanoid robots in human-centered environments. In this paper, we present a unified framework for walking control and push recovery for humanoid robots, leveraging the arms for push recovery while dynamically walking. The key innovation is to use the environment, such as walls, to facilitate push recovery by combining Single Rigid Body model predictive control (SRB-MPC) with Hybrid Linear Inverted Pendulum (HLIP) dynamics to enable robust locomotion, push detection, and recovery by utilizing the robot’s arms to brace against such walls and dynamically adjusting the desired contact forces and stepping patterns. Extensive simulation results on a humanoid robot demonstrate improved perturbation rejection and tracking performance compared to HLIP alone, with the robot able to recover from pushes up to 100N for 0.2s while walking at commanded speeds up to 0.5m/s. Robustness is further validated in scenarios with angled walls and multi-directional pushes.
In this paper, we propose a multi-domain control parameter learning framework that combines Bayesian Optimization (BO) and Hybrid Zero Dynamics (HZD) for locomotion control of bipedal robots. We leverage BO to learn the control parameters used in the HZD-based controller. The learning process is firstly deployed in simulation to optimize different control parameters for a large repertoire of gaits. Next, to tackle the discrepancy between the simulation and the real world, the learning process is applied on the physical robot to learn for corrections to the control parameters learned in simulation while also respecting a safety constraint for gait stability. This method empowers an efficient sim-to-real transition with a small number of samples in the real world, and does not require a valid controller to initialize the training in simulation. Our proposed learning framework is experimentally deployed and validated on a bipedal robot Cassie to perform versatile locomotion skills with improved performance on smoothness of walking gaits and reduction of steady-state tracking errors.