| CARVIEW |
Select Language
HTTP/2 200
server: GitHub.com
content-type: text/html; charset=utf-8
last-modified: Wed, 12 Nov 2025 22:40:13 GMT
access-control-allow-origin: *
strict-transport-security: max-age=31556952
etag: W/"69150ccd-74c6"
expires: Mon, 29 Dec 2025 10:15:41 GMT
cache-control: max-age=600
content-encoding: gzip
x-proxy-cache: MISS
x-github-request-id: 5556:3827E5:8ADBC7:9BF0CB:69525275
accept-ranges: bytes
date: Mon, 29 Dec 2025 10:05:41 GMT
via: 1.1 varnish
age: 0
x-served-by: cache-bom-vanm7210086-BOM
x-cache: MISS
x-cache-hits: 0
x-timer: S1767002741.160168,VS0,VE219
vary: Accept-Encoding
x-fastly-request-id: eb9a792a2f9ffbb56d4b19ec7046f3d6c2bbfb69
content-length: 6700
Convergent Functions, Divergent Forms
Convergent Functions, Divergent Forms
Hyeonseong Jeon* 1,2,
Ainaz Eftekhar* 1,3,
Aaron Walsman 4,
Kuo-Hao Zeng 3,
Ali Farhadi 1,3,
Ranjay Krishna 1,3
* Equal Contribution
1University of Washington, 2Seoul National University, 3Allen Institute for AI, 4Kempner Institute at Harvard University
1University of Washington, 2Seoul National University, 3Allen Institute for AI, 4Kempner Institute at Harvard University
NeurIPS 2025
is a compute-efficient co-design framework that discovers diverse, high-performing robot morphologies (divergent forms) using shared control policies (convergent functions) and dynamic local search