| CARVIEW |
Select Language
HTTP/2 301
server: GitHub.com
content-type: text/html
location: https://www.linji.me/
x-github-request-id: 1940:36A0B4:7BFDD5:8AF5D2:6951444D
accept-ranges: bytes
age: 0
date: Sun, 28 Dec 2025 14:53:01 GMT
via: 1.1 varnish
x-served-by: cache-bom-vanm7210047-BOM
x-cache: MISS
x-cache-hits: 0
x-timer: S1766933582.610806,VS0,VE194
vary: Accept-Encoding
x-fastly-request-id: b339eea152b62029441391ec3dc338818cb7cbfe
content-length: 162
HTTP/2 200
server: GitHub.com
content-type: text/html; charset=utf-8
last-modified: Mon, 23 Jun 2025 07:25:35 GMT
access-control-allow-origin: *
etag: W/"6859016f-e668"
expires: Sun, 28 Dec 2025 15:03:02 GMT
cache-control: max-age=600
content-encoding: gzip
x-proxy-cache: MISS
x-github-request-id: EDFA:15317B:7BDCA1:8AD4B2:6951444D
accept-ranges: bytes
date: Sun, 28 Dec 2025 14:53:02 GMT
via: 1.1 varnish
age: 0
x-served-by: cache-bom-vanm7210090-BOM
x-cache: MISS
x-cache-hits: 0
x-timer: S1766933582.906300,VS0,VE200
vary: Accept-Encoding
x-fastly-request-id: 7b83edffd6f9e57e20ab953023eecbaa24eeb354
content-length: 9589
Ji Lin's Homepage
Ji Lin
Contact:
jilin.eecs AT gmail
I am a research scientist at OpenAI, working on multimodal, reasoning, and synthetic data. I contributed to o3/o4-mini, GPT-4o, GPT-4.1, GPT-4.5, Operator, 4o imagegen, etc.
💡 Read our latest blog post on visual reasoning: Thinking with images!
Previously, I completed my PhD at MIT EECS advised by Prof. Song Han. Before that, I received my B.Eng. in Electronic Engineering from Tsinghua University, and M.Sc. in EECS from MIT. I've interned/worked at Adobe Research, OmniML, and NVIDIA Research.
Publications [Full List]
* indicates equal contribution
|
VILA: On Pre-training for Visual Language Models
Ji Lin*,
Hongxu Yin*,
Wei Ping,
Yao Lu,
Pavlo Molchanov,
Andrew Tao,
Huizi Mao,
Jan Kautz,
Mohammad Shoeybi,
Song Han,
|
|
AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration
Ji Lin*,
Jiaming Tang*,
Haotian Tang,
Shang Yang,
Xingyu Dang,
Song Han,
Integration:
NVIDIA TRT-LLM /
Intel Neural Compressor /
vLLM /
FastChat /
HuggingFace TGI /
LMDeploy /
FriendliAI
Best Paper Award
|
|
SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models
Guangxuan Xiao*,
Ji Lin*,
Mickael Seznec,
Julien Demouth,
Song Han,
|
|
PockEngine: Sparse and Efficient Fine-tuning in a Pocket
Ligeng Zhu,
Lanxiang Hu,
Ji Lin,
Wei-Ming Chen,
Wei-Chen Wang,
Chuang Gan,
Song Han,
|
|
Efficient Spatially Sparse Inference for Conditional GANs and Diffusion Models
Muyang Li,
Ji Lin,
Chenlin Meng,
Stefano Ermon,
Song Han,
Jun-Yan Zhu
|
|
On-Device Training Under 256KB Memory
Ji Lin*,
Ligeng Zhu*,
Wei-Ming Chen,
Wei-Chen Wang,
Chuang Gan,
Song Han
Press:
MIT News (homepage spotlight)
|
|
Network Augmentation for Tiny Deep Learning
Han Cai,
Chuang Gan,
Ji Lin,
Song Han
|
|
MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning
Ji Lin,
Wei-Ming Chen,
Han Cai,
Chuang Gan,
Song Han
|
|
Anycost GANs for Interactive Image Synthesis and Editing
Ji Lin,
Richard Zhang,
Frieder Ganz,
Song Han,
Jun-Yan Zhu
|
|
MCUNet: Tiny Deep Learning on IoT Devices
Ji Lin,
Wei-Ming Chen,
Yujun Lin,
John Cohn,
Chuang Gan,
Song Han
Press:
MIT News (homepage spotlight) /
WIRED /
MIT TR-China /
IBM /
Morning Brew /
Stacey on IoT /
Analytics Insight /
Techable /
Tendencias
|
|
Differentiable Augmentation for Data-Efficient GAN Training
Shengyu Zhao,
Zhijian Liu,
Ji Lin,
Jun-Yan Zhu,
Song Han
Press:
VentureBeat
|
|
GAN Compression: Efficient Architectures for Interactive Conditional GANs
Muyang Li,
Ji Lin,
Yaoyao Ding,
Zhijian Liu,
Jun-Yan Zhu,
Song Han
|
|
APQ: Joint Search for Network Architecture, Pruning and Quantization Policy
Tianzhe Wang,
Kuan Wang,
Han Cai,
Ji Lin,
Zhijian Liu,
Hanrui Wang,
Yujun Lin,
Song Han
|
|
AutoML for Architecting Efficient and Specialized Neural Networks
Han Cai*,
Ji Lin*,
Yujun Lin*,
Zhijian Liu*,
Kuan Wang*,
Tianzhe Wang*,
Ligeng Zhu*,
Song Han
|
|
TSM: Temporal Shift Module for Efficient Video Understanding
ICCV 2019 /
arXiv
Training Kinetics in 15 Minutes: Large-scale Distributed Training on Videos
Press:
MIT News /
MIT Technology Review /
WIRED /
Engadget/
NVIDIA News /
Industry Integration@NVIDIA
|
|
HAQ: Hardware-Aware Automated Quantization
Hardware-Centric AutoML for Mixed-Precision Quantization
|
|
AMC: AutoML for Model Compression and Acceleration on Mobile Devices
|
|
Runtime Neural Pruning
Runtime Network Routing for Efficient Image Classification
|
Academic Service
- Conference reviewer: ICLR, ICML, NeurIPS, CVPR, ICCV, ECCV, SIGGRAPH, IJCAI, AAAI, ACMMM, etc.
- Journel reviewer: T-PAMI, JMLR, T-MM, etc.
- © Ji Lin 2020

















