| CARVIEW |
Select Language
HTTP/2 301
date: Tue, 30 Dec 2025 09:13:01 GMT
content-type: text/html
location: https://lcheng.org/talks/
server: cloudflare
access-control-allow-origin: *
expires: Tue, 30 Dec 2025 09:23:01 GMT
cache-control: max-age=600
x-proxy-cache: MISS
x-github-request-id: 3568:444BC:9EC746:B238D8:6953979B
accept-ranges: bytes
age: 0
via: 1.1 varnish
x-served-by: cache-bom-vanm7210089-BOM
x-cache: MISS
x-cache-hits: 0
x-timer: S1767085982.771887,VS0,VE200
vary: Accept-Encoding
x-fastly-request-id: 400f68ef85e626743dff37b6e8cd4948be4fccdf
cf-cache-status: DYNAMIC
nel: {"report_to":"cf-nel","success_fraction":0.0,"max_age":604800}
report-to: {"group":"cf-nel","max_age":604800,"endpoints":[{"url":"https://a.nel.cloudflare.com/report/v4?s=uMB7beZa7jTyQHMQMTbD%2BkMbaOPKs5YKrAdkpKog7HVkl90qZweCPOQEHEcZz23AiRgp6DUctX7S3%2BPgjsXztUDcPDH0MmPhqCs%3D"}]}
cf-ray: 9b606b398ffc493c-BOM
alt-svc: h3=":443"; ma=86400
HTTP/2 200
date: Tue, 30 Dec 2025 09:13:02 GMT
content-type: text/html; charset=utf-8
server: cloudflare
x-origin-cache: HIT
last-modified: Wed, 24 Dec 2025 03:40:26 GMT
access-control-allow-origin: *
expires: Tue, 30 Dec 2025 09:23:02 GMT
cache-control: max-age=600
report-to: {"group":"cf-nel","max_age":604800,"endpoints":[{"url":"https://a.nel.cloudflare.com/report/v4?s=ffToN6ns0rhN4CqWQvCZBuZRGa9EdQru3Jgb5wWZ04j0PFinOmtlfwuLBRFR0FJq%2BA7YKeipQm50t7014gGffq2OVtEsQx7N9mo%3D"}]}
x-proxy-cache: MISS
x-github-request-id: EA53:2B0FD4:9E68C4:B1D9A1:6953979B
nel: {"report_to":"cf-nel","success_fraction":0.0,"max_age":604800}
age: 0
via: 1.1 varnish
x-served-by: cache-bom-vanm7210089-BOM
x-cache: MISS
x-cache-hits: 0
x-timer: S1767085982.008683,VS0,VE211
vary: Accept-Encoding
x-fastly-request-id: f3ad070f111ed64d9095eed0387671d4a372d303
cf-cache-status: DYNAMIC
content-encoding: gzip
cf-ray: 9b606b3b69d3493c-BOM
alt-svc: h3=":443"; ma=86400
Lu Cheng / 程璐

Lu Cheng, Assistant Professor
Department of Computer Science, UIC
- CDRLC 5448
- Google Scholar
- ORCID
- A Mini-Tutorial on Responsible and Trustworthy Generative Foundation Models, NSF SkAI Institute, 2025 Dec.
- From Probabilities to Possibilities: Uncertainty and Creativity in Foundation Models, LUC, 2025 Dec.
- Conformal Methods for Reliable and Fair Machine Learning, IDEAL Graph Representation Learning Workshop, 2024 May.
- Algorithmic Fairness in an Uncertain World, AAAI, 2024 Feb.
- Algorithmic Fairness in an Uncertain World, Case Western Reserve University, 2023 Oct.
- Applied Causal Inference with Surrogate Representations, LMU Munich, 2023 July.
- Algorithmic Fairness in an Uncertain World, Midwest Machine Learning Symposium, 2023 May.
- Causal Inference with Surrogate Representations in Practice, AGI Group@CMU, 2023 April.
- Sequential Bias Mitigation and the Need for Causal Fairness, BIHE Monthly Seminar UIC, 2022 Oct.
- Sequential Bias Mitigation and the Need for Causal Fairness, Seminar at Center for CBQB UIC, 2022 Oct.
- A Glance at Algorithmic Intersectionality, MLNLP, 2022 Sept.
- Advancing Cyberbullying Detection with Psychological Insights and Complex Media Data, AI For Mankind 2022
- Causal Understanding of Fake News Dissemination on Social Media, Tsinghua University AI TIME 2021
- Combating Cyberbullying and Disinformation on Social Media: The Roles of Socially Responsible AI, PhD Research Talk at IJCAI MAISoN 2021
- Socially Responsible AI Algorithms: Issues, Purposes, and Challenges, NSF REU Program at University of North Texas 2021