I’m a fourth year CS Ph.D. student at UC Berkeley where I am very fortunate to be co-advised by Peter Bartlett and Jelani Nelson.
I obtained my M.Sc. from McMaster University where I had the privilege of being advised by Hassan Ashtiani. My name is pronounced Is-hak.
Research Interests:
I am generally interested in statistical learning theory, high dimensional probability, and theoretical computer science.
I am particularly interested in understanding how we can borrow mathematical tools developed in one of these research areas to solve problems in another.
Selected publications
Preprint
On the Injective Norm of Sums of Random Tensors and the Moments of Gaussian Chaoses
We prove an upper bound on the expected \( \ell_p \) injective norm of sums of subgaussian random tensors.
Our proof is simple and does not rely on any explicit geometric or chaining arguments.
Instead, it follows from a simple application of the PAC-Bayesian lemma, a tool that has proven effective at controlling the suprema of certain “smooth” empirical processes in recent years.
Our bound strictly improves a very recent result of Bandeira, Gopi, Jiang, Lucca, and Rothvoss.
In the Euclidean case (\(p=2\)), our bound sharpens a result of Latała that was central to proving his estimates on the moments of Gaussian chaoses.
As a consequence, we obtain an elementary proof of this fundamental result.
Developing an optimal PAC learning algorithm in the realizable setting, where empirical risk minimization (ERM) is suboptimal, was a major open problem in learning theory for decades. The problem was finally resolved by Hanneke a few years ago. Unfortunately, Hanneke’s algorithm is quite complex as it returns the majority vote of many ERM classifiers that are trained on carefully selected subsets of the data. It is thus a natural goal to determine the simplest algorithm that is optimal. In this work we study the arguably simplest algorithm that could be optimal: returning the majority vote of three ERM classifiers. We show that this algorithm achieves the optimal in-expectation bound on its error which is provably unattainable by a single ERM classifier. Furthermore, we prove a near-optimal high-probability bound on this algorithm’s error. We conjecture that a better analysis will prove that this algorithm is in fact optimal in the high-probability regime.
In statistical learning theory, determining the sample complexity of realizable binary classification for VC classes was a long-standing open problem. The results of Simon and Hanneke established sharp upper bounds in this setting. However, the reliance of their argument on the uniform convergence principle limits its applicability to more general learning settings such as multiclass classification. In this paper, we address this issue by providing optimal high probability risk bounds through a framework that surpasses the limitations of uniform convergence arguments.
Our framework converts the leave-one-out error of permutation invariant predictors into high probability risk bounds. As an application, by adapting the one-inclusion graph algorithm of Haussler, Littlestone, and Warmuth, we propose an algorithm that achieves an optimal PAC bound for binary classification. Specifically, our result shows that certain aggregations of one-inclusion graph algorithms are optimal, addressing a variant of a classic question posed by Warmuth.
We further instantiate our framework in three settings where uniform convergence is provably suboptimal. For multiclass classification, we prove an optimal risk bound that scales with the one-inclusion hypergraph density of the class, addressing the suboptimality of the analysis of Daniely and Shalev-Shwartz. For partial hypothesis classification, we determine the optimal sample complexity bound, resolving a question posed by Alon, Hanneke, Holzman, and Moran. For realizable bounded regression with absolute loss, we derive an optimal risk bound that relies on a modified version of the scale-sensitive dimension, refining the results of Bartlett and Long. Our rates surpass standard uniform convergence-based results due to the smaller complexity measure in our risk bound.
COLT
The One-Inclusion Graph Algorithm is not Always Optimal
The one-inclusion graph algorithm of Haussler, Littlestone, and Warmuth achieves an optimal in-expectation risk bound in the standard PAC classification setup. In one of the first COLT open problems, Warmuth conjectured that this prediction strategy always implies an optimal high probability bound on the risk, and hence is also an optimal PAC algorithm. We refute this conjecture in the strongest sense: for any practically interesting Vapnik-Chervonenkis class, we provide an in-expectation optimal one-inclusion graph algorithm whose high probability risk bound cannot go beyond that implied by Markov’s inequality. Our construction of these poorly performing one-inclusion graph algorithms uses Varshamov-Tenengolts error correcting codes.
Our negative result has several implications. First, it shows that the same poor high-probability performance is inherited by several recent prediction strategies based on generalizations of the one-inclusion graph algorithm. Second, our analysis shows yet another statistical problem that enjoys an estimator that is provably optimal in expectation via a leave-one-out argument, but fails in the high-probability regime. This discrepancy occurs despite the boundedness of the binary loss for which arguments based on concentration inequalities often provide sharp high probability risk bounds.
ALT
On the Sample Complexity of Privately Learning Unbounded High-Dimensional Gaussians
We provide sample complexity upper bounds for agnostically learning multivariate Gaussians under the constraint of approximate differential privacy. These are the first finite sample upper bounds for general Gaussians which do not impose restrictions on the parameters of the distribution. Our bounds are near-optimal in the case when the covariance is known to be the identity, and conjectured to be near-optimal in the general case. From a technical standpoint, we provide analytic tools for arguing the existence of global “locally small” covers from local covers of the space. These are exploited using modifications of recent techniques for differentially private hypothesis selection. Our techniques may prove useful for privately learning other distribution classes which do not possess a finite cover.