| CARVIEW |
Oscar Hernan Madrid Padilla
Welcome!
I am a Tenure-track Assistant Professor in the Department of Statistics at University of California, Los Angeles. Previously, from July, 2017 to June, 2019, I was Neyman Visiting Assistant Professor in the Department of Statistics at University of California, Berkeley. Before that, I earned a Ph.D. in statistics at The University of Texas at Austin in May 2017 under the supervision of Prof. James Scott. My undergraudate degree was a B.S in Mathematics completed at CIMAT (in Mexico) in April 2013, advised by Prof. Daniel Hernandez-Hernandez.
My research interests include:
- High-dimensional and nonparametric statistics
- Change point detection
- Network problems
- Deep learning
- Causal inference
- Quantile regression
- Bayesian and empirical Bayes methodology
- Graphical models
A copy of my CV can be found here.
Email:
oscar dot madrid at stat dot ucla dot edu
Editorial Service:
- Associate Editor for Journal of Journal of the Royal Statistical Society Series B, 2025–present
- Associate Editor for Journal of Computational and Graphical Statistics, 2024–present
- Associate Editor for Stat, 2022–present
Grants:
- NSF DMS-2015489
- UCLA 2022-23 Faculty Career Development Award
- Hellman Fellowship, 2023-2024.
Former Ph.D. students:
- Siwei Ye (Graduated in 2025, Placement: Google)
- Yik Lun (Allen) Kei (Graduated in 2024, Placement: UC Santa Cruz postdoc).
- Gabriel Ruiz (Graduated in 2022, Placement: Adobe).
Current Ph.D. students:
Former Ph.D. students that I have closely worked with:
Hangjian Li, Mahmoud Essalat, Alfonso Landeros.
Published/Accepted papers
-
C.M Madrid-Padilla, O.H. Madrid-Padilla, S. Chatterjee. Risk Bounds For Distributional Regression. To appear in NeurIPS 2025. PDF.
-
C.K. Nguen, O.H. Madrid-Padilla, A.A. Amini. Network two-sample test for block models. To appear in NeurIPS 2025. PDF.
-
Y.L Kei, H. Li, Y. Chen, O.H. Madrid-Padilla. Change Point Detection on a Separable Model for Dynamic Networks. To appear in Transactions on Machine Learning Research. PDF.
-
F. Wang, W. Li, O.H. Madrid-Padilla, Y. Yu, A. Rinaldo. Multilayer random dot product graphs: Estimation and online change point detection. PDF. To appear in Journal of the Royal Statistical Society Series B.
-
Y. L. Kei, J. Li, H. Li, Y. Chen, O.H. Madrid-Padilla. Change Point Detection in Dynamic Graphs with Decoder-only Latent Space Model. Transactions on Machine Learning Research, 2025. PDF.
-
L. Cappello, O.H. Madrid-Padilla. Variance change point detection with credible sets. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 47, No. 6, 2025. PDF. (Impact factor: 20.8). Code.
-
Zhi Zhang, Kyle Ritscher, O.H. Madrid-Padilla. Quantile Additive Trend Filtering. To appear in Proceedings of The 28th International Conference on Artificial Intelligence and Statistics, 2025. PDF.
-
Z. Zhang, C. Chow, Y. Zhang, Y. Sun, H. Zhang, E.H Jiang, H. Liu, F. Huang, Y. Cui, O.H. Madrid-Padilla. Statistical Guarantees for Lifelong Reinforcement Learning using PAC-Bayesian Theory. To appear in Proceedings of The 28th International Conference on Artificial Intelligence and Statistics, 2025. PDF.
-
H. Li, O.-H. Madrid-Padilla, Q. Zhou. Learning Gaussian DAGs from Network Data. Journal of Machine Learning Research, 25(377):1−52, 2024. PDF.
-
M. Matabuena, J.C. Vidal, O.-H. Madrid-Padilla, D. Sejdinovic. Kernel Biclustering algorithm in Hilbert Spaces. Advances in Data Analysis and Classification (2025): 1-42. PDF.
-
O.-H. Madrid-Padilla. Variance estimation in graphs with the fused lasso. Journal of Machine Learning Research, 25(250):1−45, 2024. PDF.
-
Marcos Matabuena , O. H. Madrid-Padilla. Energy distance and kernel mean embeddings for two-sample survival testing with application in immunotherapy clinical trial. To appear in REVSTAT. Link
-
O.-H. Madrid-Padilla, S. Chatterjee. Quantile Regression by Dyadic CART. PDF. Electronic Journal of Statistics, 8(1), 1206-1247, 2024.
-
Y. Yu, O.-H. Madrid-Padilla, D. Wang, A. Rinaldo. Network online change point localization. PDF. SIAM Journal on Mathematics of Data Science (SIMODS), 6(1), 176-198, 2024.
-
C.M. Madrid-Padilla, H. Xu, Daren Wang, O.H. Madrid-Padilla, Y. Yu. Change point detection and inference in multivariable nonparametric models under mixing conditions. PDF. Advances in Neural Information Processing Systems (NeurIPS), 36: 21081-21134, 2023.
-
Yi Yu, O.-H. Madrid-Padilla, Daren Wang, Alessandro Rinaldo. A Note on Online Change Point Detection. PDF. Sequential Analysis, 42(4), 438-471, 2023.
-
S. Ye, Y. Chen, O.-H. Madrid-Padilla. 2D score based estimation of heterogeneous treatment effects. PDF. Code. Journal of Causal Inference, 11(1), 20220016, 2023.
-
Y.L Kei, Y. Chen, O.-H. Madrid-Padilla. A Partially Separable Model for Dynamic Valued Networks. PDF. Computational Statistics & Data Analysis, 187, 107811, 2023.
-
L. Cappello, O.-H. Madrid-Padilla, J. A. Palacios. Bayesian Change Point Detection with Spike and Slab Priors. PDF. Journal of Computational and Graphical Statistics, 32(4), 1488-1500, 2023.
-
H. Jiang, S. Qin, O.-H. Madrid-Padilla. Feature Grouping and Sparse Principal Component Analysis with Truncated Regularization. PDF. Stat, 12(1), e538, 2023.
-
Alexandre Belloni* , Mingli Chen* , O. H. Madrid-Padilla* , Zixuan (Kevin) Wang* (alphabetical order). High-Dimensional Latent Panel Quantile Regression with an Application to Asset Pricing. Link. arXiv. Annals of Statistics. 51(1): 96-121 (February 2023).
-
G. Ruiz, O.-H. Madrid-Padilla, Q. Zhou. Sequentially learning the topological ordering of causal directed acyclic graphs with likelihood ratio scores. PDF. Transactions on Machine Learning Research 2022.
-
O.-H. Madrid-Padilla, Yi Yu, Carey E. Priebe. Change point localization in dependent dynamic nonparametric random dot product graphs. Link. Journal of Machine Learning Research, 23(234), 1-59, 2022
-
O.H. Madrid-Padilla, W. Tansey, Y. Chen. Quantile regression with ReLU Networks: Estimators and minimax rates. PDF. Journal of Machine Learning Research, 23(247), 1−42, 2022. Code.
-
Alfonso Landeros, O.H. Madrid-Padilla, Hua Zhou, Kenneth Lange. Extensions to the Proximal Distance of Method of Constrained Optimization. PDF. Journal of Machine Learning Research, Vol. 23, No. 182, 1−45, 2022. Code.
-
M. Essalat, D. Morrison, S. Kak, E. Chang, I. Penso, R. Kulchar, O.-H. Madrid-Padilla, V. Shetty. A naturalistic study of brushing patterns using powered toothbrushes. PLoS One. 2022 May 19;17(5):e0263638. Link.
-
F. Wang, O.-H. Madrid-Padilla, Y. Yu, A. Rinaldo. Denoising and change point localisation in piecewise-constant high-dimensional regression coefficients. Proceedings of The 25th International Conference on Artificial Intelligence and Statistics, PMLR 151:4309-4338. (Oral presentation, in the top 44 out of 1685 submissions), 2022. PDF.
-
Y. Yu, O.-H. Madrid-Padilla, A. Rinaldo. Optimal partition recovery in general graphs. Proceedings of The 25th International Conference on Artificial Intelligence and Statistics, PMLR 151:4339-4358, 2022. PDF.
-
O.-H. Madrid-Padilla, Yi Yu, Daren Wang, Alessandro Rinaldo. Optimal nonparametric multivariate change point detection and localization. IEEE Transactions on Information Theory, Volume: 68, Issue: 3, March 2022. PDF
-
O.-H. Madrid-Padilla, Y. Yu, A. Rinaldo. Lattice partition recovery with dyadic CART. 34th Conference on Neural Information Processing Systems. 2021. PDF.
-
O.H. Madrid-Padilla, Sabyasachi Chatterjee. Risk Bounds for Quantile Trend Filtering. Biometrika, 109(3), 751-768, 2022. PDF.
-
O.-H. Madrid-Padilla and Y. Chen. Graphon estimation via nearest-neighbour algorithm and two-dimensional fused-lasso denoising. The Canadian Journal of Statistics, 51(1), 95-110, 2023. Link.
-
S. Woody, O.-H. Madrid-Padilla, J. G. Scott. Optimal post-selection inference for sparse signals: a nonparametric empirical-Bayes approach. PDF. Biometrika, Volume 109, Issue 1, March 2022, Pages 1–16.
-
S. Ye, O.H. Madrid-Padilla. Non-Parametric Quantile Regression via the K-NN Fused Lasso. PDF. Journal of Machine Learning Research, Vol. 22, No. 111, 1-38, 2021. Code.
-
O.-H. Madrid-Padilla, Yi Yu, Daren Wang, Alessandro Rinaldo. Optimal nonparametric change point detection and localization. Electronic Journal of Statistics. 15 (1) 1154 - 1201, 2021. Link.
-
O.H. Madrid-Padilla, James Sharpnack, Yanzhen Chen, Daniela Witten. Adaptive Non-Parametric Regression With the K-NN Fused Lasso . Biometrika, Volume 107, Issue 2, June 2020, Pages 293–310. Link. Code.
-
O.H. Madrid-Padilla, Alex Athey, Alex Reinhart, James G. Scott. Sequential nonparametric tests for a change in distribution: an application to detecting radiological anomalies. Journal of the American Statistical Association, Vol. 114, Issue 526, 514-528, 2019. Link.
-
O.H. Madrid-Padilla, J. Sharpnack, J.G. Scott, and R.J Tibshirani. The DFS Fused Lasso: Linear-Time Denoising over General Graphs. Journal of Machine Learning Research, Vol. 18, No. 176, 1-36, 2018. Link.
-
O.H. Madrid-Padilla, N.G. Polson and J.G. Scott. A deconvolution path to mixtures. Electronic Journal of Statistics Volume 12, Number 1 (2018), 1717-1751.
-
D. Hernandez-Hernandez* and O.H. Madrid-Padilla*. Worst portfolios for dynamic monetary utility processes. Stochastics, Vol. 90, Number 1 (2018), 78-101.
-
O.H. Madrid-Padilla and J.G. Scott. Tensor decomposition with generalized lasso penalties. Journal of Computational and Graphical Statistics 2017, 26:3, 537-546. arXiv. Code.
-
M. Zhou, O.H. Madrid-Padilla, and J. G. Scott, “Priors for random count matrices derived from a family of negative binomial processes,” Journal of the American Statistical Association 2016, Vol. 111, No. 515, 1144-1156, Theory and Methods. PDF. Code.
-
W. Tansey, O.-H. Madrid-Padilla, A. Suggala, and P. Ravikumar. Vector-Space Markov Random Fields via Exponential Families.In International Conference on Machine Learning (ICML) 32, 2015. PDF. Code
Preprints
-
Y.L Kei, O.H. Madrid-Padilla, R. Killick, J. Wilson, X. Chen, R. Lund. Clustering in Networks with Time-varying Nodal Attributes. PDF.
-
S. Kumar, H. Xu, C.M. Madrid-Padilla, Y. Khoo, O.H. Madrid-Padilla, D. Wang. Bias-variance Tradeoff in Tensor Estimation. PDF.
-
D. Berlind, L. Cappello, O.H. Madrid-Padilla. A Bayesian framework for change-point detection with uncertainty. quantification. PDF.
-
F. Wang, K. Ritscher, Y.L. Kei, X. Ma, O.H. Madrid-Padilla. Change Point Localization and Inference in Dynamic Multilayer Networks. PDF.
-
C.M Madrid-Padilla, O.H. Madrid-Padilla, Y.L. Kei, Z. Zhang, Y. Chen. Confidence Interval Construction and Conditional Variance Estimation with Dense ReLU Networks. PDF. (Equal contribution from the first two authors). Code.
-
H. Xu, C.M Madrid-Padilla, O.H. Madrid-Padilla, D. Wang. Multivariate Poisson intensity estimation via low-rank tensor decomposition. PDF.
-
D. Lai, O.H. Madrid-Padilla, T. Guan. Bayesian Transfer Learning for Enhanced Estimation and Inference. PDF. 2025 ASA Student Paper Award.
-
Z. Zhang, C.M Madrid-Padilla, X. Luo, D. Wang, O.H. Madrid-Padilla. Dense ReLU Neural Networks for Temporal-spatial Model. PDF.
-
M. Matabuena, R. Ghosal, P. Mozharovskyi, O.H. Madrid-Padilla, J.P. Onnela. Conformal uncertainty quantification using kernel depth measures in separable Hilbert spaces. PDF.
-
M. Matabuena, J.C. Vidal, O.H. Madrid-Padilla, J.P. Onnela. kNN Algorithm for Conditional Mean and Variance Estimation with Automated Uncertainty Quantification and Variable Selection. PDF.
-
C.M. Madrid-Padilla, O.H. Madrid-Padilla, D. Wang. Temporal-spatial model via Trend Filtering. (The first author is one of my brothers). PDF.
-
M. Essalat, O.H. Madrid-Padilla, V.Shetty, G. Pottie. Monitoring Brushing behaviors using Toothbrush Embedded Motion-Sensors. Link.
-
O.-H. Madrid-Padilla, Y. Yu. Dynamic and heterogeneous treatment effects with abrupt changes. PDF.
-
G. Ruiz, O.-H. Madrid-Padilla. Non-asymptotic confidence bands on the probability an individual benefits from treatment (PIBT). PDF.
-
O.-H. Madrid-Padilla, Y. Chen, C.-M Madrid-Padilla, G. Ruiz. A causal fused lasso for interpretable heterogeneous treatment effects estimation. PDF. Code.
-
Shitong Wei, O.-H. Madrid-Padilla, James Sharpnack. Distributed Cartesian Power Graph Segmentation for Graphon Estimation. Link.
-
O.H. Madrid-Padilla and J.G. Scott. Nonparametric density estimation by histogram trend filtering. Link.
*Alphabetical order.
Contador de visitas
registro de marcas
