As a researcher in machine learning (ML) and natural language processing (NLP), my ultimate goal is to reduce communication disparities across languages and cultures with the help of large language models (LLMs). In pursuit of inclusive LLMs, I have worked on (1) advancing multilingual language modeling, (2) developing resources and evaluation, especially in low‑resource languages, and (3) assisting English as a Foreign Language (EFL) learning through LLM‑driven education innovation.
My research interests include:
Multilingual NLP, Low-resource Languages
NLP Resources, Data & Evaluation
Language Learning, LLM-driven Education Innovation
Please feel free to contact me via email {firstname}.{lastname} (at) kaist.ac.kr.
Large language models (LLMs) now exhibit near human-level performance in various tasks, but their performance drops drastically after a handful of high-resource languages due to the imbalance in pre-training data. Inspired by the human process of second language acquisition, particularly code-switching (the practice of language alternation in a conversation), we propose code-switching curriculum learning (CSCL) to enhance cross-lingual transfer for LLMs. CSCL mimics the stages of human language learning by progressively training models with a curriculum consisting of 1) token-level code-switching, 2) sentence-level code-switching, and 3) monolingual corpora. Using Qwen 2 as our underlying model, we demonstrate the efficacy of the CSCL in improving language transfer to Korean, achieving significant performance gains compared to monolingual continual pre-training methods. Ablation studies reveal that both token- and sentence-level code-switching significantly enhance cross-lingual transfer and that curriculum learning amplifies these effects. We also extend our findings into various languages, including Japanese (high-resource) and Indonesian (low-resource), and using two additional models (Gemma 2 and Phi 3.5). We further show that CSCL mitigates spurious correlations between language resources and safety alignment, presenting a robust, efficient framework for more equitable language transfer in LLMs. We observe that CSCL is effective for low-resource settings where high-quality, monolingual corpora for language transfer are hardly available.
Code-Switching Red-Teaming: LLM Evaluation for Safety and Multilingual Understanding
Haneul Yoo, Yongjin Yang, and Hwaran Lee
ACL, 2025
Presentation at Red Teaming GenAI @ NeurIPS 2024 and CALCS @ NAACL 2025
Recent studies in large language models (LLMs) shed light on their multilingual ability and safety, beyond conventional tasks in language modeling. Still, current benchmarks reveal their inability to comprehensively evaluate them and are excessively dependent on manual annotations. In this paper, we introduce code-switching red-teaming (CSRT), a simple yet effective red-teaming technique that simultaneously tests multilingual understanding and safety of LLMs. We release the CSRT dataset, which comprises 315 code-switching queries combining up to 10 languages and eliciting a wide range of undesirable behaviors. Through extensive experiments with ten state-of-the-art LLMs, we demonstrate that CSRT significantly outperforms existing multilingual red-teaming techniques, achieving 46.7% more attacks than existing methods in English. We analyze the harmful responses toward the CSRT dataset concerning various aspects under ablation studies with 16K samples, including but not limited to scaling laws, unsafe behavior categories, and input conditions for optimal data generation. Additionally, we validate the extensibility of CSRT, by generating code-switching attack prompts with monolingual data.
DREsS: Dataset for Rubric-based Essay Scoring on EFL Writing
Haneul Yoo, Jieun Han, So-Yeon Ahn, and Alice Oh
Automated essay scoring (AES) is a useful tool in English as a Foreign Language (EFL) writing education, offering real-time essay scores for students and instructors. However, previous AES models were trained on essays and scores irrelevant to the practical scenarios of EFL writing education and usually provided a single holistic score due to the lack of appropriate datasets. In this paper, we release DREsS, a large-scale, standard dataset for rubric-based automated essay scoring. DREsS comprises three sub-datasets: DREsS_New, DREsS_Std., and DREsS_CASE. We collect DREsS_New, a real-classroom dataset with 1.7K essays authored by EFL undergraduate students and scored by English education experts. We also standardize existing rubric-based essay scoring datasets as DREsS_Std. We suggest CASE, a corruption-based augmentation strategy for essays, which generates 20K synthetic samples of DREsS_CASE and improves the baseline results by 45.44%. DREsS will enable further research to provide a more accurate and practical AES system for EFL writing education.
Rethinking Annotation: Can Language Learners Contribute?
Researchers have traditionally recruited native speakers to provide annotations for the widely used benchmark datasets. But there are languages for which recruiting native speakers is difficult, and it would help to get learners of those languages to annotate the data. In this paper, we investigate whether language learners can contribute annotations to the benchmark datasets. In a carefully controlled annotation experiment, we recruit 36 language learners, provide two types of additional resources (dictionaries and machine-translated sentences), and perform mini-tests to measure their language proficiency. We target three languages, English, Korean, and Indonesian, and four NLP tasks, sentiment analysis, natural language inference, named entity recognition, and machine reading comprehension. We find that language learners, especially those with intermediate or advanced language proficiency, are able to provide fairly accurate labels with the help of additional resources. Moreover, we show that data annotation improves learners’ language proficiency in terms of vocabulary and grammar. The implication of our findings is that broadening the annotation task to include language learners can open up the opportunity to build benchmark datasets for languages for which it is difficult to recruit native speakers.
HUE: Pretrained Model and Dataset for Understanding Hanja Documents of Ancient Korea
Historical records in Korea before the 20th century were primarily written in Hanja, an extinct language based on Chinese characters and not understood by modern Korean or Chinese speakers. Historians with expertise in this time period have been analyzing the documents, but that process is very difficult and time-consuming, and language models would significantly speed up the process. Toward building and evaluating language models for Hanja, we release the Hanja Understanding Evaluation dataset consisting of chronological attribution, topic classification, named entity recognition, and summary retrieval tasks. We also present BERT-based models continued training on the two major corpora from the 14th to the 19th centuries: the Annals of the Joseon Dynasty and Diaries of the Royal Secretariats. We compare the models with several baselines on all tasks and show there are significant improvements gained by training on the two corpora. Additionally, we run zero-shot experiments on the Daily Records of the Royal Court and Important Officials (DRRI). The DRRI dataset has not been studied much by the historians, and not at all by the NLP community.