Hello! I am a Research Scientist at Google Research in Mountain View. I received my PhD in Computer Science from Yale University. My advisor was Amin Karbasi.
My research focuses on learning theory and mechanism design. In summer 2023, I was a research intern at Google Research in Mountain View, hosted by
Andres Perlroth and Gagan Aggarwal.
From October 2023 until May 2024 I was a student researcher at Google Research hosted by Yuan Deng.
In summer 2024, I was a research intern at Google Research in New York hosted by William Kong.
Before coming to Yale, I completed my undergrad studies at NTUA majoring in computer science and electrical engineering, where I worked with Dimitris Fotakis.
email: gvelegkas41 AT gmail DOT com
Preprints
Authors are listed in alphabetical order, unless denoted by (*).- Language Generation with Infinite Contamination
- Anay Mehrotra, Grigoris Velegkas, Xifan Yu, Felix Zhou
- [Preprint] [Arxiv]
- Language Identification in the Limit with Computational Trace
- Binghui Peng, Amin Saberi, Grigoris Velegkas
- [Preprint]
- Characterizations of Language Generation With Breadth
- Alkis Kalavasis, Anay Mehrotra, Grigoris Velegkas
- [Preprint] [Arxiv]
- Pointwise Lipschitz Continuous Graph Algorithms via Proximal Gradient Analysis
- Quanquan Liu, Grigoris Velegkas, Yuichi Yoshida, Felix Zhou
- [Preprint] [Arxiv]
Publications
Authors are listed in alphabetical order, unless denoted by (*).- On Agnostic PAC Learning in the Small Error Regime
- Julian Asilis, Mikael Møller Høgsgaard, Grigoris Velegkas
- [NeurIPS 2025 (Spotlight)] [Arxiv]
- On Union-Closedness of Language Generation
- Steve Hanneke, Amin Karbasi, Anay Mehrotra, Grigoris Velegkas
- [NeurIPS 2025] [Arxiv]
- (Im)possibility of Automated Hallucination Detection in Large Language Models
- Amin Karbasi, Omar Montasser, John Sous, Grigoris Velegkas
- [COLM 2025] [Arxiv]
- Procurement Auctions via Approximately Optimal Submodular Optimization
- Yuan Deng, Amin Karbasi, Vahab Mirrokni, Renato Paes Leme, Grigoris Velegkas, Song Zuo
- [ICML 2025 (Spotlight)] [Arxiv]
- On the Limits of Language Generation: Trade-Offs Between Hallucination and Mode Collapse
- Alkis Kalavasis, Anay Mehrotra, Grigoris Velegkas
- [STOC 2025] [Arxiv]
- Understanding Aggregations of Proper Learners in Multiclass Classification
- Julian Asilis, Mikael Møller Høgsgaard, Grigoris Velegkas
- [ALT 2025] [Arxiv]
- Injecting Undetectable Backdoors in Deep Learning and Language Models
- Alkis Kalavasis, Amin Karbasi, Argyris Oikonomou, Katerina Sotiraki, Grigoris Velegkas, Manolis Zampetakis
- [NeurIPS 2024] [Arxiv]
- Randomized Truthful Auctions with Learning Agents
- Gagan Aggarwal, Anupam Gupta, Andres Perlroth, Grigoris Velegkas
- [NeurIPS 2024] [Arxiv]
- Universal Rates for Active Learning
- Steve Hanneke, Amin Karbasi, Shay Moran, Grigoris Velegkas
- [NeurIPS 2024] [NeurIPS Proceedings]
- On the Computational Landscape of Replicable Learning
- Alkis Kalavasis, Amin Karbasi, Grigoris Velegkas, Felix Zhou
- [NeurIPS 2024] [Arxiv]
- Universal Rates for Regression: Separations between Cut-Off and Absolute Loss
- Idan Attias, Steve Hanneke, Alkis Kalavasis, Amin Karbasi, Grigoris Velegkas
- [COLT 2024] [COLT Proceedings]
- Replicable Learning of Large-Margin Halfspaces
- Alkis Kalavasis, Amin Karbasi, Kasper Green Larsen, Grigoris Velegkas, Felix Zhou
- [ICML 2024 (Spotlight)] [Arxiv]
- User Response in Ad Auctions: An MDP Formulation of Long-term Revenue Optimization
- Yang Cai, Zhe Feng, Christopher Liaw, Aranyak Mehta, Grigoris Velegkas
- [WWW 2024] [WWW Proceedings]
- Optimal Learners for Realizable Regression: PAC Learning and Online Learning
- Idan Attias, Steve Hanneke, Alkis Kalavasis, Amin Karbasi, Grigoris Velegkas
- [NeurIPS 2023 (Oral Presentation)] [Arxiv]
- Replicable Clustering
- Hossein Esfandiari, Amin Karbasi, Vahab Mirrokni, Grigoris Velegkas, Felix Zhou
- [NeurIPS 2023] [Arxiv]
- Replicability in Reinforcement Learning
- Amin Karbasi, Grigoris Velegkas, Lin F. Yang, Felix Zhou
- [NeurIPS 2023] [Arxiv]
- Statistical Indistinguishability of Learning Algorithms
- Alkis Kalavasis, Amin Karbasi, Shay Moran, Grigoris Velegkas
- [ICML 2023] [Arxiv]
- Replicable Bandits
- Hossein Esfandiari, Alkis Kalavasis, Amin Karbasi, Andreas Krause, Vahab Mirrokni, Grigoris Velegkas
- [ICLR 2023] [Arxiv]
- Universal Rates for Interactive Learning
- Steve Hanneke, Amin Karbasi, Shay Moran, Grigoris Velegkas
- [NeurIPS 2022 (Oral Presentation)] [NeurIPS Proceedings]
- Multiclass Learnability Beyond the PAC Framework: Universal Rates and Partial Concept Classes
- Alkis Kalavasis(*), Grigoris Velegkas(*), Amin Karbasi
- [NeurIPS 2022] [Arxiv]
- Reinforcement Learning with Logarithmic Regret and Policy Switches
- Grigoris Velegkas(*), Zhuoran Yang, Amin Karbasi
- [NeurIPS 2022] [NeurIPS Proceedings]
- Is Selling Complete Information (Approximately) Optimal?
- Dirk Bergemann, Yang Cai, Grigoris Velegkas, Mingfei Zhao
- [EC 2022] [Arxiv]
- An Efficient ε-BIC to BIC Transformation and Its Application to Black-Box Reduction in Revenue Maximization
- Yang Cai, Argyris Oikonomou, Grigoris Velegkas, Mingfei Zhao
- [SODA 2021] [Arxiv]
- How to Sell Information Optimally: an Algorithmic Study
- Yang Cai, Grigoris Velegkas
- [ITCS 2021] [Arxiv]
Awards
- Leventis Foundation Scholarship for Academic Excellence, 2024-2025
- Onassis Foundation Scholarship for Academic Excellence, 2020-2024
- Bodossaki Foundation Scholarship for Academic Excellence, 2020-2024
- Gerondelis Foundation Scholarship for Academic Excellence, 2019-2020
- Eurobank "A great moment for education" Award, 2013