| CARVIEW |
Select Language
HTTP/2 200
server: GitHub.com
content-type: text/html; charset=utf-8
last-modified: Thu, 03 Jun 2021 14:02:27 GMT
access-control-allow-origin: *
etag: W/"60b8e0f3-3b9e"
expires: Tue, 30 Dec 2025 07:53:28 GMT
cache-control: max-age=600
content-encoding: gzip
x-proxy-cache: MISS
x-github-request-id: 375F:123DE:9C560C:AFA011:695382A0
accept-ranges: bytes
age: 0
date: Tue, 30 Dec 2025 07:43:29 GMT
via: 1.1 varnish
x-served-by: cache-bom-vanm7210070-BOM
x-cache: MISS
x-cache-hits: 0
x-timer: S1767080609.819057,VS0,VE235
vary: Accept-Encoding
x-fastly-request-id: ad2adc72b86fdb95bfae1cbcba4d51e4da033899
content-length: 3193
Gaël Letarte
Gaël Letarte
Mathematician • Machine Learning Researcher
Short bio
I am currently a Ph.D. student in Machine Learning at Université Laval, supervised by Pascal Germain and François Laviolette. I am a founding member of Baseline, a cooperative of data scientists.
Publications
Conference Papers
-
Gaël Letarte, Pascal Germain, Benjamin Guedj, François Laviolette (NeurIPS 2019).
Dichotomize and Generalize: PAC-Bayesian Binary Activated Deep Neural Networks .
[ pdf ] • [ link ] • [ GitHub ] • [ poster ] • [ Youtube ] -
Gaël Letarte, Emilie Morvant, Pascal Germain (AISTATS 2019).
Pseudo-Bayesian Learning with Kernel Fourier Transform as Prior .
[ pdf ] • [ link ] • [ GitHub ] • [ poster ]
Journal Papers
-
Alexandre Drouin, Gaël Letarte, Frédéric Raymond, Mario Marchand, Jacques Corbeil, François Laviolette (Scientific Report 2019).
Interpretable genotype-to-phenotype classifiers with performance guarantees.
[ pdf ] • [ supp ] • [ link ] • [ GitHub ]
Workshops
-
Gaël Letarte, Frédérik Paradis, Philippe Giguère, François Laviolette (EMNLP 2018).
Importance of Self-Attention for Sentiment Analysis.
[ pdf ] • [ link ] • [ GitHub ] • [ poster ] -
Alexandre Drouin, Frédéric Raymond, Gaël Letarte, Mario Marchand, Jacques Corbeil, François Laviolette (NIPS 2016).
Large scale modeling of antimicrobial resistance with interpretable classifiers.
[ pdf ] • [ link ] • [ GitHub ]
Projects
Tool allowing to learn interpretable computational phenotyping models from k-merized genomic data.
Cooperative of data scientists operating in Quebec City and striving to democratize artificial intelligence.
A Keras-like framework for PyTorch and handles much of the boilerplating code needed to train neural networks.
Want to know more?
- © Gaël Letarte, 2019
- Design: HTML5 UP


