You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
We provide the code and models for the following report (arXiv Preprint):
Appearance-and-Relation Networks for Video Classification
Limin Wang, Wei Li, Wen Li, and Luc Van Gool
in arXiv, 2017
Updates
November 23th, 2017
Initialize the repo.
Overview
ARTNet aims to learn spatiotemporal features from videos in an end-to-end manner. Its construction is based on a newly-designed module, termed as SMART block. ARTNet is a simple and general video architecture and all these relased models are trained from scratch on video dataset. Currently, for an engineering compromise between accuracy and efficiency, ARTNet is instantiated with the ResNet-18 architecture and trained on the input volume of 112*112*16.
Training on Kinetics
The training of ARTNet is based on our modified Caffe toolbox. Specical thanks to @zbwglory for modifying this code.
The training code is under folder of models/.
Performance on the validation set of Kinetics
Model
Backbone architecture
Spatial resolution
Top-1 Accuracy
Top-5 Accuracy
C2D
ResNet18
112*112
61.2
82.6
C3D
ResNet18
112*112
65.6
85.7
C3D
ResNet34
112*112
67.1
86.9
ARTNet (s)
ResNet18
112*112
67.7
87.1
ARTNet (d)
ResNet18
112*112
69.2
88.3
ARTNet+TSN
ResNet18
112*112
70.7
89.3
These models are trained on the Kinetics dataset from scratch and tested on the validation set. Our training is performed based on the input volume of 112*112*16. The test is performed by cropping 25 clips from the videos.
Fine tuning on HMDB51 and UCF101
The fine tuning process is conducted based on the TSN framework, where segment number is 2.
The fine tuning code is under folder of fine_tune/
Performance on the datasets of HMDB51 and UCF101
Model
Backbone architecture
Spatial resolution
HMDB51
UCF101
C3D
ResNet18
112*112
62.1
89.8
ARTNet (d)
ResNet18
112*112
67.6
93.5
ARTNet+TSN
ResNet18
112*112
70.9
94.3
These models learned on the Kinetics dataset are transferred to the HMDB51 and UCF101 datasets. The fine-tuning process is done with TSN framework where the segment number is 2. The performance is reported over three splits by using only RGB input.