A high-level query framework for incremental computation in Rust.
Warning
This is WIP
- Async-agnostic queries: Write sync query logic, run with sync or async runtime
- Automatic caching: Query results are cached and invalidated based on dependencies
- Suspense pattern: Handle async loading with
LoadingStatewithout coloring functions - Type-safe: Per-query-type caching with compile-time guarantees
- Early cutoff: Skip downstream recomputation when values don't change
- Lock-free: Built on whale, a lock-free dependency-tracking primitive
use query_flow::{query, QueryContext, QueryError, QueryRuntime};
#[query]
fn add(ctx: &mut QueryContext, a: i32, b: i32) -> Result<i32, QueryError> {
Ok(a + b)
}
let runtime = QueryRuntime::new();
let result = runtime.query(Add::new(1, 2)).unwrap();
assert_eq!(*result, 3);The #[query] macro transforms a function into a query struct implementing the Query trait:
use query_flow::{query, QueryContext, QueryError};
// Basic query - generates `Add` struct
#[query]
fn add(ctx: &mut QueryContext, a: i32, b: i32) -> Result<i32, QueryError> {
Ok(a + b)
}
// Query with dependencies
#[query]
fn double_sum(ctx: &mut QueryContext, a: i32, b: i32) -> Result<i32, QueryError> {
let sum = ctx.query(Add::new(*a, *b))?;
Ok(*sum * 2)
}// Custom durability (0-3, higher = changes less frequently)
#[query(durability = 2)]
fn stable_query(ctx: &mut QueryContext, id: u64) -> Result<Data, QueryError> { ... }
// Selective cache keys - only `id` is part of the key
#[query(keys(id))]
fn fetch_user(ctx: &mut QueryContext, id: u64, include_deleted: bool) -> Result<User, QueryError> {
// Queries with same `id` share cache, regardless of `include_deleted`
}
// Custom struct name
#[query(name = "FetchUserById")]
fn fetch_user(ctx: &mut QueryContext, id: u64) -> Result<User, QueryError> { ... }
// Custom output equality (for types without PartialEq)
#[query(output_eq = my_custom_eq)]
fn complex_query(ctx: &mut QueryContext) -> Result<ComplexType, QueryError> { ... }For full control, implement the Query trait directly:
use query_flow::{Query, QueryContext, QueryError, Key};
struct Add { a: i32, b: i32 }
impl Query for Add {
type CacheKey = (i32, i32);
type Output = i32;
fn cache_key(&self) -> Self::CacheKey {
(self.a, self.b)
}
fn query(&self, _ctx: &mut QueryContext) -> Result<Self::Output, QueryError> {
Ok(self.a + self.b)
}
fn output_eq(old: &Self::Output, new: &Self::Output) -> bool {
old == new
}
}query-flow supports both system errors and user errors through QueryError:
- System errors:
Suspend,Cycle,Cancelled,MissingDependency - User errors:
UserError(Arc<anyhow::Error>)- cached like successful results
// User errors with ? operator - errors are automatically converted
#[query]
fn parse_int(ctx: &mut QueryContext, input: String) -> Result<i32, QueryError> {
let num: i32 = input.parse()?; // ParseIntError -> QueryError::UserError
Ok(num)
}
// System errors propagate automatically
#[query]
fn process(ctx: &mut QueryContext, id: u64) -> Result<Output, QueryError> {
let data = ctx.query(FetchData::new(id))?; // Propagates Suspend, Cycle, UserError, etc.
Ok(transform(*data))
}By default, all UserError values are considered different (conservative). Use QueryRuntimeBuilder to customize:
let runtime = QueryRuntime::builder()
.error_comparator(|a, b| {
// Treat errors as equal if they have the same message
a.to_string() == b.to_string()
})
.build();Assets represent external resources (files, network data) that queries can depend on:
use query_flow::{asset_key, AssetKey, DurabilityLevel};
use std::path::PathBuf;
// Using the macro
#[asset_key(asset = String)]
pub struct ConfigFile(pub PathBuf);
// With durability hint
#[asset_key(asset = String, durability = constant)]
pub struct BundledAsset(pub PathBuf);
// Manual implementation
pub struct TextureId(pub u32);
impl AssetKey for TextureId {
type Asset = ImageData;
fn asset_eq(old: &Self::Asset, new: &Self::Asset) -> bool {
old.bytes == new.bytes
}
fn durability(&self) -> DurabilityLevel {
DurabilityLevel::Stable
}
}#[query]
fn process_config(ctx: &mut QueryContext, path: PathBuf) -> Result<Config, QueryError> {
// Get asset - returns LoadingState<Arc<String>>
let content = ctx.asset(&ConfigFile(path.clone()))?;
// Suspend if not ready (propagates to caller)
let content = content.suspend()?;
// Parse and return
Ok(parse_config(&content))
}let runtime = QueryRuntime::new();
// Optional: Register a locator for immediate resolution
runtime.register_asset_locator(MyFileLocator::new());
// Execute query - may return Err(Suspend) if assets are loading
match runtime.query(ProcessConfig::new(path)) {
Ok(result) => println!("Done: {:?}", result),
Err(QueryError::Suspend) => {
// Handle pending assets
for pending in runtime.pending_assets() {
if let Some(path) = pending.key::<ConfigFile>() {
let content = std::fs::read_to_string(&path.0)?;
runtime.resolve_asset(path.clone(), content);
}
}
// Retry query
let result = runtime.query(ProcessConfig::new(path))?;
}
Err(e) => return Err(e),
}// File was modified externally
runtime.invalidate_asset(&ConfigFile(path));
// Dependent queries will now suspend until resolved
// Remove asset entirely
runtime.remove_asset(&ConfigFile(path));The suspense pattern allows sync query code to handle async operations:
/// LoadingState<T> represents async loading state
pub enum LoadingState<T> {
Loading,
Ready(T),
}
impl<T> LoadingState<T> {
/// Convert to Result - Loading becomes Err(Suspend)
pub fn suspend(self) -> Result<T, QueryError>;
pub fn is_loading(&self) -> bool;
pub fn is_ready(&self) -> bool;
pub fn get(&self) -> Option<&T>;
pub fn map<U>(self, f: impl FnOnce(T) -> U) -> LoadingState<U>;
}Durability hints help optimize invalidation propagation:
| Level | Value | Description |
|---|---|---|
Volatile |
0 | Changes frequently (default) |
Session |
1 | Stable within a session |
Stable |
2 | Changes rarely |
Constant |
3 | Never changes (bundled assets) |
let runtime = QueryRuntime::new();
// Execute queries
let result = runtime.query(MyQuery::new(...))?;
// Invalidation
runtime.invalidate::<MyQuery>(&cache_key);
runtime.clear_cache();
// Asset management
runtime.register_asset_locator(locator);
runtime.resolve_asset(key, value);
runtime.invalidate_asset(&key);
runtime.remove_asset(&key);
// Pending assets
runtime.pending_assets(); // All pending
runtime.pending_assets_of::<K>(); // Filtered by type
runtime.has_pending_assets();| Crate | Description |
|---|---|
query-flow |
High-level query framework with automatic caching and dependency tracking |
query-flow-macros |
Procedural macros for defining queries |
query-flow-inspector |
Debugging and inspection tools |
whale |
Low-level lock-free dependency-tracking primitive |
Whale is the low-level primitive that powers query-flow. It provides lock-free dependency tracking without opinions about what queries are or how to store their results.
Use query-flow if you want a batteries-included incremental computation framework. Use whale directly if you need:
- Full control over query representation and storage
- Custom invalidation strategies
- Integration with existing systems
- Maximum flexibility
Whale is designed to be a minimal primitive for building high-level incremental computing systems. It does not provide:
- What actually the "query" is
- How to calculate a query ID
- Any data storage to store the result of a query
- Rich high-level APIs
Whale is built around a lock-free dependency graph where nodes represent computations and edges represent their dependencies.
Core Components:
- Runtime: The central coordinator that manages the dependency graph. Lock-free and safe to clone across threads.
- Node: A vertex representing a computation with version, dependencies, dependents, and invalidation state.
- Pointer: A reference to a specific version of a computation (query ID + version).
- RevisionPointer: An extended pointer including invalidation state for precise state tracking.
Lock-free Design:
The system uses atomic operations and immutable data structures:
- Nodes are updated through atomic compare-and-swap operations
- Dependencies and dependents are stored in immutable collections
- Version numbers are managed through atomic counters
This allows multiple threads to concurrently query states, propagate invalidations, and modify the dependency graph.
Consistency Guarantees:
- Version Monotonicity: Version numbers only increase per query
- Cyclic Safety: Remains functional even with cycles in the dependency graph
- Invalidation Guarantees: All dependents are notified of changes
- salsa: A well-known library for incremental computing with a different design philosophy.
Licensed under either of
- Apache License, Version 2.0
- MIT license
at your option.