| CARVIEW |
Select Language
HTTP/2 200
date: Tue, 30 Dec 2025 06:36:10 GMT
content-type: text/html; charset=utf-8
vary: X-PJAX, X-PJAX-Container, Turbo-Visit, Turbo-Frame, X-Requested-With,Accept-Encoding, Accept, X-Requested-With
etag: W/"bf34831c5156bf1694d6d0258366d05d"
cache-control: max-age=0, private, must-revalidate
strict-transport-security: max-age=31536000; includeSubdomains; preload
x-frame-options: deny
x-content-type-options: nosniff
x-xss-protection: 0
referrer-policy: no-referrer-when-downgrade
content-security-policy: default-src 'none'; base-uri 'self'; child-src github.githubassets.com github.com/assets-cdn/worker/ github.com/assets/ gist.github.com/assets-cdn/worker/; connect-src 'self' uploads.github.com www.githubstatus.com collector.github.com raw.githubusercontent.com api.github.com github-cloud.s3.amazonaws.com github-production-repository-file-5c1aeb.s3.amazonaws.com github-production-upload-manifest-file-7fdce7.s3.amazonaws.com github-production-user-asset-6210df.s3.amazonaws.com *.rel.tunnels.api.visualstudio.com wss://*.rel.tunnels.api.visualstudio.com github.githubassets.com objects-origin.githubusercontent.com copilot-proxy.githubusercontent.com proxy.individual.githubcopilot.com proxy.business.githubcopilot.com proxy.enterprise.githubcopilot.com *.actions.githubusercontent.com wss://*.actions.githubusercontent.com productionresultssa0.blob.core.windows.net/ productionresultssa1.blob.core.windows.net/ productionresultssa2.blob.core.windows.net/ productionresultssa3.blob.core.windows.net/ productionresultssa4.blob.core.windows.net/ productionresultssa5.blob.core.windows.net/ productionresultssa6.blob.core.windows.net/ productionresultssa7.blob.core.windows.net/ productionresultssa8.blob.core.windows.net/ productionresultssa9.blob.core.windows.net/ productionresultssa10.blob.core.windows.net/ productionresultssa11.blob.core.windows.net/ productionresultssa12.blob.core.windows.net/ productionresultssa13.blob.core.windows.net/ productionresultssa14.blob.core.windows.net/ productionresultssa15.blob.core.windows.net/ productionresultssa16.blob.core.windows.net/ productionresultssa17.blob.core.windows.net/ productionresultssa18.blob.core.windows.net/ productionresultssa19.blob.core.windows.net/ github-production-repository-image-32fea6.s3.amazonaws.com github-production-release-asset-2e65be.s3.amazonaws.com insights.github.com wss://alive.github.com wss://alive-staging.github.com api.githubcopilot.com api.individual.githubcopilot.com api.business.githubcopilot.com api.enterprise.githubcopilot.com; font-src github.githubassets.com; form-action 'self' github.com gist.github.com copilot-workspace.githubnext.com objects-origin.githubusercontent.com; frame-ancestors 'none'; frame-src viewscreen.githubusercontent.com notebooks.githubusercontent.com; img-src 'self' data: blob: github.githubassets.com media.githubusercontent.com camo.githubusercontent.com identicons.github.com avatars.githubusercontent.com private-avatars.githubusercontent.com github-cloud.s3.amazonaws.com objects.githubusercontent.com release-assets.githubusercontent.com secured-user-images.githubusercontent.com/ user-images.githubusercontent.com/ private-user-images.githubusercontent.com opengraph.githubassets.com marketplace-screenshots.githubusercontent.com/ copilotprodattachments.blob.core.windows.net/github-production-copilot-attachments/ github-production-user-asset-6210df.s3.amazonaws.com customer-stories-feed.github.com spotlights-feed.github.com objects-origin.githubusercontent.com *.githubusercontent.com; manifest-src 'self'; media-src github.com user-images.githubusercontent.com/ secured-user-images.githubusercontent.com/ private-user-images.githubusercontent.com github-production-user-asset-6210df.s3.amazonaws.com gist.github.com github.githubassets.com; script-src github.githubassets.com; style-src 'unsafe-inline' github.githubassets.com; upgrade-insecure-requests; worker-src github.githubassets.com github.com/assets-cdn/worker/ github.com/assets/ gist.github.com/assets-cdn/worker/
server: github.com
content-encoding: gzip
accept-ranges: bytes
set-cookie: _gh_sess=h1cV2FfJaT%2F%2BewZhxMrOocK02FzXiC%2Bx0xMLbr54ZjBLYLJ1ZezV5l7GHTVSgTglpEAnN5Zi9gsK18H2G4ZiNq12O9zL7N4ndHKVG7HGDHOKNLGCoQOkuOK%2FD%2Fc2pNaBx3BSOh1gZg1ID3d7aZbhtO2F43P774DiAY1nYGp15bTZZixZNIIBVn3SztOZWkqz7X7OY8mV99IiqSFazRkCc%2FZTYzDTf8pMpZdfZPjsVrwH%2FtKKx6MVP7tBdTootB48EfKQmr%2FvqFxtjkPZhhh6VA%3D%3D--uKWUoqVhDwHrNj3l--BzZPI0BJ6pkFczeQIp92gg%3D%3D; Path=/; HttpOnly; Secure; SameSite=Lax
set-cookie: _octo=GH1.1.1193981570.1767076569; Path=/; Domain=github.com; Expires=Wed, 30 Dec 2026 06:36:09 GMT; Secure; SameSite=Lax
set-cookie: logged_in=no; Path=/; Domain=github.com; Expires=Wed, 30 Dec 2026 06:36:09 GMT; HttpOnly; Secure; SameSite=Lax
x-github-request-id: 8512:AEDC4:28E131:2D0B69:695372D9
GitHub - pgermain/pbda: PAC-Bayesian Domain Adaptation (aka PBDA) -- machine learning algorithm
Skip to content
Navigation Menu
{{ message }}
-
Notifications
You must be signed in to change notification settings - Fork 4
PAC-Bayesian Domain Adaptation (aka PBDA) -- machine learning algorithm
License
pgermain/pbda
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
---------------------------------------------------------------------------------------------------- PAC-BAYESIAN DOMAIN ADAPTATION (aka PBDA) Version 0.901 (August 9, 2013), Released under the BSD-license https://github.com/pgermain/pbda ---------------------------------------------------------------------------------------------------- Author: Pascal Germain. Groupe de Recherche en Apprentissage Automatique de l'Universite Laval (GRAAL). Reference: Pascal Germain, Amaury Habrard, Francois Laviolette, and Emilie Morvant. A PAC-Bayesian Approach for Domain Adaptation with Specialization to Linear Classifiers. International Conference on Machine Learning (ICML) 2013. ---------------------------------------------------------------------------------------------------- Thank you for looking at my code! This program have been tested using Python 3.6 under Linux. It requires the NumPy and SciPy libraries. I prepared three small scripts to use PBDA by the command line: 1) pbda_learn.py: Execute the learning algorithm 2) pbda_classify.py: Execute the classification function 3) pbda_reverse_cv.py: Compute a "reverse cross-validation" score Further usage instructions can be obtained by the following commands: python pbda_learn.py --help python pbda_classify.py --help python pbda_reverse_cv.py --help The data used in the paper experiments is available here (in svmlight format): https://researchers.lille.inria.fr/pgermain/data/amazon_tfidf_svmlight.tgz Pascal Germain.
About
PAC-Bayesian Domain Adaptation (aka PBDA) -- machine learning algorithm
Resources
License
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published
You can’t perform that action at this time.