You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
dataGen.py -- Used to generate tensors from the set of tuples.
factorize.py -- Joint tensor factorization.
cliqueMine.py -- Constrained Clique mining.
Usage:
$ python2.7 dataGen.py <tuples_file> <output_dir> </br>
--- Each line in the input file is a tab separated 4-tuple of the format
subject "\t" relation "\t" object "\t" other "\t" frequency. </br>
--- 3-tuples can also be provided in the same file along with 4-tuples, in which case use the string "<na>" for other. </br>
--- This script will create pkl files in the output directory. </br>
$ python2.7 factorize.py <data_dir> <output_dir> [other options]</br>
--- Performs the factorization and store the latent factor matrices and core tensors in the <output_dir> directory. </br>
--- <data_dir> should be same as the <output_dir> of dataGen.py. </br>
optional arguments: </br>
-h, --help show this help message and exit </br>
--minLambda MINLAMBDA [MINLAMBDA ...] </br>
** Enter the min lambda (list), default = 0.1 0.1 0.1 </br>
--maxLambda MAXLAMBDA [MAXLAMBDA ...] </br>
** Enter the max lambda (list), needed only for grid
search. If no grid search, provide only minLambda option.
--step STEP Enter the step size for grid search (default = 0.5) </br>
--maxIters MAXITERS Enter the maximum iterations (default = 10) </br>
--rank1 RANK1 Enter rank1 (default = 10) </br>
--rank2 RANK2 Enter rank2 (default = 10) </br>
--rank3 RANK3 Enter rank3 (default = 10) </br>
--fit FIT Y/N, default = N. Give Y for fit computation. </br>
--cores CORES Number of Threads </br>
$ python2.7 cliqueMine.py <data_dir> <output_dir> --rank r1 r2 r3 </br>
--- Performs constrained clique mining and stores the schemas in <output_dir> </br>
--- <data_dir> should be same as <data_dir> used to run Factorize.py
References:
[1] Madhav Nimishakavi, Manish Gupta and Partha Talukdar. Relation Schema Induction using Tensor Factorization with Back-off and Aggregation. Proceedings of 2018 Conference on Association for Computaional Linguistics (ACL 2018).
About
HIgher-order Relation Schema Induction using Tensor Factorization with Back-off and Aggregation