You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
This repository contains the code to reproduce the results from the paper.
[Surface Reconstruction from Point Clouds by Learning Predictive Context Priors](https://arxiv.org/abs/2204.11015).
You can find detailed usage instructions for training your own models and using pretrained models below.
If you find our code or paper useful, please consider citing
@inproceedings{PredictiveContextPriors,
title = {Surface Reconstruction from Point Clouds by Learning Predictive Context Priors},
author = {Baorui, Ma and Yu-Shen, Liu and Matthias, Zwicker and Zhizhong, Han},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2022}
}
Pytorch Version
This work was originally implemented by tensorflow, pytroch version of the code will be released soon that is easier to use.
In different datasets or your own data, because of the variation in point cloud density, this '0.5' parameter has a very strong influence on the final result, which controls the distance between the query points and the point cloud. So if you want to get better results, you should adjust this parameter. We give '0.5' here as a reference value, and this value can be used for most object-level reconstructions. For the scene dataset, we will later publish the reference values for the hyperparameter settings for the scene dataset.
About
Implementation of CVPR'2022:Surface Reconstruction from Point Clouds by Learning Predictive Context Priors