You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
#the name of your experiment
exp_name="load&fix"
#the idx of the model in the list
idx=0
#models
model=[AllInOne1_rgcn_rgt_gcn]
#your log file to record your training
file =['AllInOne1_rgcn_rgt_gcn.log']
#set logger
logger=set_logger(file[idx],exp_name)
#path to save your model
save_root='/data3/whr/lyh/MoE/mixture-of-experts/twibot-20/model/'
save_pth=save_root+file[idx].rstrip('.log')+'/'
if(not os.path.exists(save_pth)):
os.mkdir(save_pth)
logger.info(exp_name)
#the path of preprocessed features
root='MoE/mixture-of-experts/BotRGCN/twibot_20/processed_data/'
#hyper parameters of the model
align_size_set=[128]
hidden_size_set=[4]
hidden_size=4
device="cuda:2"
dataset=Twibot22(root=root,device=device)
test_run=range(20)
num_text=2
gnn_k=1
num_gnn=3
Then you can start training!
python main.py
Step 2 Test your model
Change the path to your trained model
trainer.model = torch.load([path/to/your/model])
Then run
python test.py
About
The code for the paper "BotMoE: Twitter Bot Detection with Community-Aware Mixtures of Modal-Specific Experts"