| CARVIEW |
Select Language
HTTP/2 200
date: Sat, 27 Dec 2025 17:18:57 GMT
content-type: text/html; charset=utf-8
vary: X-PJAX, X-PJAX-Container, Turbo-Visit, Turbo-Frame, X-Requested-With,Accept-Encoding, Accept, X-Requested-With
etag: W/"af8b061edd82cb270d82e2dd82535d05"
cache-control: max-age=0, private, must-revalidate
strict-transport-security: max-age=31536000; includeSubdomains; preload
x-frame-options: deny
x-content-type-options: nosniff
x-xss-protection: 0
referrer-policy: no-referrer-when-downgrade
content-security-policy: default-src 'none'; base-uri 'self'; child-src github.githubassets.com github.com/assets-cdn/worker/ github.com/assets/ gist.github.com/assets-cdn/worker/; connect-src 'self' uploads.github.com www.githubstatus.com collector.github.com raw.githubusercontent.com api.github.com github-cloud.s3.amazonaws.com github-production-repository-file-5c1aeb.s3.amazonaws.com github-production-upload-manifest-file-7fdce7.s3.amazonaws.com github-production-user-asset-6210df.s3.amazonaws.com *.rel.tunnels.api.visualstudio.com wss://*.rel.tunnels.api.visualstudio.com github.githubassets.com objects-origin.githubusercontent.com copilot-proxy.githubusercontent.com proxy.individual.githubcopilot.com proxy.business.githubcopilot.com proxy.enterprise.githubcopilot.com *.actions.githubusercontent.com wss://*.actions.githubusercontent.com productionresultssa0.blob.core.windows.net/ productionresultssa1.blob.core.windows.net/ productionresultssa2.blob.core.windows.net/ productionresultssa3.blob.core.windows.net/ productionresultssa4.blob.core.windows.net/ productionresultssa5.blob.core.windows.net/ productionresultssa6.blob.core.windows.net/ productionresultssa7.blob.core.windows.net/ productionresultssa8.blob.core.windows.net/ productionresultssa9.blob.core.windows.net/ productionresultssa10.blob.core.windows.net/ productionresultssa11.blob.core.windows.net/ productionresultssa12.blob.core.windows.net/ productionresultssa13.blob.core.windows.net/ productionresultssa14.blob.core.windows.net/ productionresultssa15.blob.core.windows.net/ productionresultssa16.blob.core.windows.net/ productionresultssa17.blob.core.windows.net/ productionresultssa18.blob.core.windows.net/ productionresultssa19.blob.core.windows.net/ github-production-repository-image-32fea6.s3.amazonaws.com github-production-release-asset-2e65be.s3.amazonaws.com insights.github.com wss://alive.github.com wss://alive-staging.github.com api.githubcopilot.com api.individual.githubcopilot.com api.business.githubcopilot.com api.enterprise.githubcopilot.com; font-src github.githubassets.com; form-action 'self' github.com gist.github.com copilot-workspace.githubnext.com objects-origin.githubusercontent.com; frame-ancestors 'none'; frame-src viewscreen.githubusercontent.com notebooks.githubusercontent.com; img-src 'self' data: blob: github.githubassets.com media.githubusercontent.com camo.githubusercontent.com identicons.github.com avatars.githubusercontent.com private-avatars.githubusercontent.com github-cloud.s3.amazonaws.com objects.githubusercontent.com release-assets.githubusercontent.com secured-user-images.githubusercontent.com/ user-images.githubusercontent.com/ private-user-images.githubusercontent.com opengraph.githubassets.com marketplace-screenshots.githubusercontent.com/ copilotprodattachments.blob.core.windows.net/github-production-copilot-attachments/ github-production-user-asset-6210df.s3.amazonaws.com customer-stories-feed.github.com spotlights-feed.github.com objects-origin.githubusercontent.com *.githubusercontent.com; manifest-src 'self'; media-src github.com user-images.githubusercontent.com/ secured-user-images.githubusercontent.com/ private-user-images.githubusercontent.com github-production-user-asset-6210df.s3.amazonaws.com gist.github.com github.githubassets.com; script-src github.githubassets.com; style-src 'unsafe-inline' github.githubassets.com; upgrade-insecure-requests; worker-src github.githubassets.com github.com/assets-cdn/worker/ github.com/assets/ gist.github.com/assets-cdn/worker/
server: github.com
content-encoding: gzip
accept-ranges: bytes
set-cookie: _gh_sess=11wBTKFMYKTGT6KF3wwHFVufR5ICzVCDVLYzsHLSQFiasCbSrAm%2FmZf7uVAQa46hnQqy%2BxpFJoW3X%2FHiqmLIm%2F9LC3KCevkKNgsqUaZHpAe3HIDcEshCubjDVpbId4ooG0%2FvPLh6yiN7jjZKN%2BMrKIi7aoRtDAW%2FDMlPcl3hck5LMCtYz7S%2FrshK4%2FenJ%2BxymyC%2BM15wUBkL0934ZzLp560X9F6QN5kLG9fGdjQ1%2FD4ZG3O3g5Zcw%2BFJDVvnV7emXrJ%2BjpLD9w9DkuvlLdfa5g%3D%3D--X5oHJz0lWe7UFDGI--tSPe2IJx7IWTQV7QiA%2BYbQ%3D%3D; Path=/; HttpOnly; Secure; SameSite=Lax
set-cookie: _octo=GH1.1.1560765010.1766855937; Path=/; Domain=github.com; Expires=Sun, 27 Dec 2026 17:18:57 GMT; Secure; SameSite=Lax
set-cookie: logged_in=no; Path=/; Domain=github.com; Expires=Sun, 27 Dec 2026 17:18:57 GMT; HttpOnly; Secure; SameSite=Lax
x-github-request-id: E170:1F5657:4665236:54CF96E:69501501
Home · jfkirk/tensorrec Wiki · GitHub
Skip to content
Navigation Menu
{{ message }}
-
Notifications
You must be signed in to change notification settings - Fork 222
Home
James Kirk edited this page May 9, 2018
·
10 revisions
TensorRec is a Python recommendation system that allows you to quickly develop recommendation algorithms and customize them using TensorFlow.
TensorRec lets you to customize your recommendation system's representation functions, prediction function, and loss function while TensorRec handles the data manipulation, scoring, and ranking to generate recommendations.
A TensorRec system consumes three pieces of data: user_features, item_features, and interactions. It uses this data to learn to make and rank recommendations.
For more information, and for an outline of this project, please read this blog post.

TensorRec can be installed via pip:
pip install tensorrec
import numpy as np
import tensorrec
# Build the model with default parameters
model = tensorrec.TensorRec()
# Generate some dummy data
interactions, user_features, item_features = tensorrec.util.generate_dummy_data(
num_users=100,
num_items=150,
interaction_density=.05
)
# Fit the model for 5 epochs
model.fit(interactions, user_features, item_features, epochs=5, verbose=True)
# Predict scores and ranks for all users and all items
predictions = model.predict(user_features=user_features,
item_features=item_features)
predicted_ranks = model.predict_rank(user_features=user_features,
item_features=item_features)
# Calculate and print the recall at 10
r_at_k = tensorrec.eval.recall_at_k(predicted_ranks, interactions, k=10)
print(np.mean(r_at_k))Clone this wiki locally
You can’t perform that action at this time.