[paper]
This repository provides our evluation data, pretrained models, and implementations of the tested methods.
To get started on experiments easily, we provide DeepLabv3+ checkpoints trained on first COCO and then ScanNet, but excluding different classes:
| Outlier Class | ScanNet Validation | Checkpoint |
|---|---|---|
| television | 43% mIoU | download |
| books + bookshelf | 42% mIoU | download |
| towel | 41% mIoU | download |
You can also load the models directly through torchhub:
import torch
no_tv = torch.hub.load('hermannsblum/scim:main', 'dv3res101_no_tv')
no_book = torch.hub.load('hermannsblum/scim:main', 'dv3res101_no_book')
no_towel = torch.hub.load('hermannsblum/scim:main', 'dv3res101_no_towel')To automatically download and preprocess data, we use TFDS with a pytorch wrapper:
import tensorflow_datasets as tfds
import semsegcluster.data.scannet
from semsegcluster.data.tfds_to_torch import TFDataIterableDataset
data = tfds.load('scan_net/scene0354_00', split='validation')
torchdata = TFDataIterableDataset(data)Method implementations are split up into several steps for added flexibility. Below we describe the workflows for each method.
Nakajima
- run inference
python deeplab/scannet_inference.py with subset=$SCENE and pretrained_model=$MODEL- run mapping (for flexibility, we run semantic mapping and uncertainty mapping separately)
roslaunch panoptic_mapping_utils scannnet_mapping.launch scene:=$SCENE model:=$MODEL inference_path:=<folder for outputs>/scannet_inference/$SCENE/$MODEL
roslaunch panoptic_mapping_utils scannnet_uncertmap.launch scene:=$SCENE model:=$MODEL inference_path:=<folder for outputs>/scannet_inference/$SCENE/$MODEL- render the maps
panoptic_mapping_utils scannnet_predrender.launch scene:=$SCENE model:=$MODEL inference_path:=<folder for outputs>/scannet_inference/$SCENE/$MODEL
panoptic_mapping_utils scannnet_voxelidrender.launch scene:=$SCENE model:=$MODEL inference_path:=<folder for outputs>/scannet_inference/$SCENE/$MODEL
panoptic_mapping_utils scannnet_uncertrender.launch scene:=$SCENE model:=$MODEL inference_path:=<folder for outputs>/scannet_inference/$SCENE/$MODEL- get the geometric features (we run 3DSmoothNet in a singularity container)
singularity run --nv --bind $OUTPUTS/$SCENE/$MODEL/point_cloud_0.ply:/pc.ply --bind $OUTPUTS/$SCENE/$MODEL/smoothnet:/output --bind $SMOOTHNET_DATA/evaluate:/3DSmoothNet/data/evaluate --bind $SMOOTHNET_DATA/logs:/3DSmoothNet/logs --bind $SMOOTHNET_DATA/preprocessed:/preprocessed smoothnet.simg
roslaunch panoptic_mapping_utils scannnet_geofeatures.launch scene:=$SCENE model:=$MODEL- run parameter optimisation and clustering
python3 deeplab/scannet_nakajima.py best_mcl_nakajima with subset=$SCENE pretrained_model=$MODEL n_calls=100 shard=20Uhlemeyer
- run inference
python deeplab/scannet_inference.py with subset=$SCENE and pretrained_model=$MODEL- run meta-segmentation and clustering
python3 deeplab/scannet_uhlemeyer.py with subset=$SCENE pretrained_model=$MODEL pred_name=pred uncert_name=maxlogit-pp eps=3.5 min_samples=10- train the segmentation model and run inference with the new model
python deeplab/scannet_adaptation.py with subset=$SCENE and pretrained_model=$MODEL pseudolabels=uhlemeyer<id>
python deeplab/scannet_adaptedinference.py with training=<id from above> subset=$SCENEour approach to SCIM
- run inference
python deeplab/scannet_inference.py with subset=$SCENE and pretrained_model=$MODEL- run mapping (for flexibility, we run semantic mapping and uncertainty mapping separately)
roslaunch panoptic_mapping_utils scannnet_mapping.launch scene:=$SCENE model:=$MODEL inference_path:=<folder for outputs>/scannet_inference/$SCENE/$MODEL
roslaunch panoptic_mapping_utils scannnet_uncertmap.launch scene:=$SCENE model:=$MODEL inference_path:=<folder for outputs>/scannet_inference/$SCENE/$MODEL- render the maps
panoptic_mapping_utils scannnet_predrender.launch scene:=$SCENE model:=$MODEL inference_path:=<folder for outputs>/scannet_inference/$SCENE/$MODEL
panoptic_mapping_utils scannnet_voxelidrender.launch scene:=$SCENE model:=$MODEL inference_path:=<folder for outputs>/scannet_inference/$SCENE/$MODEL
panoptic_mapping_utils scannnet_uncertrender.launch scene:=$SCENE model:=$MODEL inference_path:=<folder for outputs>/scannet_inference/$SCENE/$MODEL- get the geometric features (we run 3DSmoothNet in a singularity container)
singularity run --nv --bind $OUTPUTS/$SCENE/$MODEL/point_cloud_0.ply:/pc.ply --bind $OUTPUTS/$SCENE/$MODEL/smoothnet:/output --bind $SMOOTHNET_DATA/evaluate:/3DSmoothNet/data/evaluate --bind $SMOOTHNET_DATA/logs:/3DSmoothNet/logs --bind $SMOOTHNET_DATA/preprocessed:/preprocessed smoothnet.simg
roslaunch panoptic_mapping_utils scannnet_geofeatures.launch scene:=$SCENE model:=$MODEL- run parameter optimisation and clustering (here we combine segmentation feautures, geometric features, and DINO; see the
deeplab/folder for different scripts combining different features)
python3 deeplab/scannet_segandgeoanddino.py best_hdbscan with subset=$SCENE pretrained_model=$MODEL n_calls=200 cluster_selection_method=eom- combine clustering and mapping into pseudolabels (
outlierneeds to be adjusted dependent on the clustering above)
python deeplab/pseudolabel.py with subset=$SCENE and pretrained_model=$MODEL outlier=segandgeoanddinohdbscan<id>- train the segmentation model and run inference with the new model
python deeplab/scannet_adaptation.py with subset=$SCENE and pretrained_model=$MODEL pseudolabels=merged-pseudolabel-pred-segandgeoanddinohdbscan<id>
python deeplab/scannet_adaptedinference.py with training=<id from above> subset=$SCENEWe offer a dockerfile that installs the whole code-base into a container. To install individual parts, see below:
This part is implemented in python. To install it, run:
git clone https://github.com/hermannsblum/scim.git
cd scim && python -m pip install -e .For mapping, we rely on an existing mapping framework. This is implemented in ROS.
First, create a catkin workspace:
sudo apt-get install python3-catkin-tools
mkdir -p ~/catkin_ws/src
cd ~/catkin_ws
catkin init
catkin config --extend /opt/ros/noetic
catkin config --cmake-args -DCMAKE_BUILD_TYPE=RelWithDebInfo
catkin config --merge-develThen install the framework into a catkin workspace:
wstool init \
&& git clone --branch hermann-devel https://github.com/ethz-asl/panoptic_mapping.git \
&& wstool merge panoptic_mapping/panoptic_mapping_https.rosinstall \
&& wstool update -j8 \
&& catkin build panoptic_mapping_utils point_cloud_ioAll intermediate outputs of different steps are stored to a folder. This folder needs to be set correctly in some places:
Add a file semsegcluster/settings.py with the following content:
EXPERIMENT_STORAGE_FOLDER = '<folder for experimental logs>'
TMPDIR = '/tmp'
TMP_DIR = '/tmp'
EXP_OUT = '<folder for outputs>'The <folder for outputs> is also the one that should be used in the inference_path:= argument to the roslaunch files.
Experimental logs are stored with sacred. If instead of tracking them in a folder, you want to track them in a database, please add the following lines to settings.py:
EXPERIMENT_DB_HOST =
EXPERIMENT_DB_USER =
EXPERIMENT_DB_PWD =
EXPERIMENT_DB_NAME =Unfortunately, the code does not yet directly download from ScanNet. Therefore, first download the relevant scenes as described here and then put them in a zip archive called valscans.zip that you store in ~/tensorflow_datasets/downloads/manual/valscans.zip. TFDS will then automatically extract, resize, and load the scenes.