An experimental AI agent that automatically discovers, categorizes, and visualizes technology ecosystems based on keyword searches.
Ecosystem Mapper takes a keyword (e.g., "agentic AI", "vector databases", "MLOps") and automatically:
- Discovers recent projects and resources across GitHub and the web
- Analyzes the landscape to create a taxonomy/categorization
- Identifies representative examples within each category
- Generates visual ecosystem maps showing the landscape
Input: User-provided keyword (e.g., "agentic AI")
Data Sources:
- GitHub API: Search for repositories created in the last 3 months matching the keyword
- Tavily Search: Web search to find articles, tools, and resources
Analysis Engine:
- Model: Google Gemini 3 Flash Preview (via OpenRouter)
- Task: Cross-analyze projects and resources to:
- Create a taxonomy/categorization scheme
- Identify main categories within the ecosystem
- Find representative examples for each category
- Determine relationships and groupings
Output: Structured taxonomy with categorized examples
Input: Taxonomy and categorized examples from Stage 1
Process:
- Use example ecosystem maps as style references
- Generate visual representations of the ecosystem
- Create market map-style visualizations showing:
- Categories and subcategories
- Representative projects/companies
- Relationships and groupings
Output: Ecosystem map images
# Analyze the agentic AI ecosystem
python agent.py --keyword "agentic AI"
# Explore vector database landscape
python agent.py --keyword "vector databases"
# Map out the RAG (Retrieval Augmented Generation) ecosystem
python agent.py --keyword "RAG frameworks"Set up your .env file (see .env.example):
# OpenRouter Configuration
OR_RESEARCH_MODEL_NAME=google/gemini-3-flash-preview
OR_IMAGE_GEN_MODEL_NAME_1=google/gemini-3-pro-image-preview
OPENROUTER_API_KEY=your_openrouter_api_key_here
# Tavily Search API
TAVILY_API_KEY=your_tavily_api_key_here
# GitHub Personal Access Token
GITHUB_PAT=your_github_personal_access_token_hereEcosystem-Mapper/
├── agent.py # Main orchestration script
├── modules/
│ ├── github_collector.py # GitHub API integration
│ ├── tavily_search.py # Tavily search integration
│ ├── taxonomy_analyzer.py # Gemini-powered taxonomy creation
│ └── visualizer.py # Map generation (Stage 2)
├── example-maps/ # Reference ecosystem maps
├── outputs/ # Generated taxonomies and maps
└── README.md
- Python 3.10+
- OpenRouter API access (for Gemini)
- GitHub API token
- Tavily API key
- Required packages:
requests,python-dotenv,openai(for OpenRouter)
- ✅ Stage 1a: Data collection modules (GitHub + Tavily)
- ✅ Stage 1b: Taxonomy analysis with Gemini
- 🚧 Stage 2: Visualization generation (planned)
The example-maps/ folder contains ecosystem maps from public sources that serve as visual style references for the maps we'll generate.
Private repository - Daniel Rosehill
This is an experimental project exploring automated ecosystem mapping and visualization. The agent uses AI to understand domain landscapes and create structured categorizations automatically.