| CARVIEW |
Select Language
HTTP/2 200
date: Sun, 28 Dec 2025 07:03:20 GMT
content-type: text/html; charset=utf-8
vary: X-PJAX, X-PJAX-Container, Turbo-Visit, Turbo-Frame, X-Requested-With,Accept-Encoding, Accept, X-Requested-With
etag: W/"c719ba849849d00e1e3142de17b155f9"
cache-control: max-age=0, private, must-revalidate
strict-transport-security: max-age=31536000; includeSubdomains; preload
x-frame-options: deny
x-content-type-options: nosniff
x-xss-protection: 0
referrer-policy: no-referrer-when-downgrade
content-security-policy: default-src 'none'; base-uri 'self'; child-src github.githubassets.com github.com/assets-cdn/worker/ github.com/assets/ gist.github.com/assets-cdn/worker/; connect-src 'self' uploads.github.com www.githubstatus.com collector.github.com raw.githubusercontent.com api.github.com github-cloud.s3.amazonaws.com github-production-repository-file-5c1aeb.s3.amazonaws.com github-production-upload-manifest-file-7fdce7.s3.amazonaws.com github-production-user-asset-6210df.s3.amazonaws.com *.rel.tunnels.api.visualstudio.com wss://*.rel.tunnels.api.visualstudio.com github.githubassets.com objects-origin.githubusercontent.com copilot-proxy.githubusercontent.com proxy.individual.githubcopilot.com proxy.business.githubcopilot.com proxy.enterprise.githubcopilot.com *.actions.githubusercontent.com wss://*.actions.githubusercontent.com productionresultssa0.blob.core.windows.net/ productionresultssa1.blob.core.windows.net/ productionresultssa2.blob.core.windows.net/ productionresultssa3.blob.core.windows.net/ productionresultssa4.blob.core.windows.net/ productionresultssa5.blob.core.windows.net/ productionresultssa6.blob.core.windows.net/ productionresultssa7.blob.core.windows.net/ productionresultssa8.blob.core.windows.net/ productionresultssa9.blob.core.windows.net/ productionresultssa10.blob.core.windows.net/ productionresultssa11.blob.core.windows.net/ productionresultssa12.blob.core.windows.net/ productionresultssa13.blob.core.windows.net/ productionresultssa14.blob.core.windows.net/ productionresultssa15.blob.core.windows.net/ productionresultssa16.blob.core.windows.net/ productionresultssa17.blob.core.windows.net/ productionresultssa18.blob.core.windows.net/ productionresultssa19.blob.core.windows.net/ github-production-repository-image-32fea6.s3.amazonaws.com github-production-release-asset-2e65be.s3.amazonaws.com insights.github.com wss://alive.github.com wss://alive-staging.github.com api.githubcopilot.com api.individual.githubcopilot.com api.business.githubcopilot.com api.enterprise.githubcopilot.com; font-src github.githubassets.com; form-action 'self' github.com gist.github.com copilot-workspace.githubnext.com objects-origin.githubusercontent.com; frame-ancestors 'none'; frame-src viewscreen.githubusercontent.com notebooks.githubusercontent.com; img-src 'self' data: blob: github.githubassets.com media.githubusercontent.com camo.githubusercontent.com identicons.github.com avatars.githubusercontent.com private-avatars.githubusercontent.com github-cloud.s3.amazonaws.com objects.githubusercontent.com release-assets.githubusercontent.com secured-user-images.githubusercontent.com/ user-images.githubusercontent.com/ private-user-images.githubusercontent.com opengraph.githubassets.com marketplace-screenshots.githubusercontent.com/ copilotprodattachments.blob.core.windows.net/github-production-copilot-attachments/ github-production-user-asset-6210df.s3.amazonaws.com customer-stories-feed.github.com spotlights-feed.github.com objects-origin.githubusercontent.com *.githubusercontent.com; manifest-src 'self'; media-src github.com user-images.githubusercontent.com/ secured-user-images.githubusercontent.com/ private-user-images.githubusercontent.com github-production-user-asset-6210df.s3.amazonaws.com gist.github.com github.githubassets.com; script-src github.githubassets.com; style-src 'unsafe-inline' github.githubassets.com; upgrade-insecure-requests; worker-src github.githubassets.com github.com/assets-cdn/worker/ github.com/assets/ gist.github.com/assets-cdn/worker/
server: github.com
content-encoding: gzip
accept-ranges: bytes
set-cookie: _gh_sess=HHERncIJRhKv1ieaHckP4%2FKrpP9vTucqAO7sdOYx3QWga0orccJiCyDWC%2Fv9PLHG60msKK5Qjv2xB71VpMkd9AAN2WD18o3Klrc0LScMuwXKss1AkCfJfFY%2B9G6PQPA9APGn%2BCxxTm7uJaaJpztGOIEAa7hedKzur8BC2bXb36ZMMaZbgEQcmWxijpSj%2FuTyQwnhT9KLtKdqAvEG3wV9VHNVSmXav35o8rjZXAUwNE0w8HAQsfgtx0e5NATginRwsl6dQlNIZDn8bmsmGsZOeA%3D%3D--Lp25xx0ez8%2FUgiLl--AWE8JiWDEys2wAXn6%2BqlaA%3D%3D; Path=/; HttpOnly; Secure; SameSite=Lax
set-cookie: _octo=GH1.1.1745975439.1766905399; Path=/; Domain=github.com; Expires=Mon, 28 Dec 2026 07:03:19 GMT; Secure; SameSite=Lax
set-cookie: logged_in=no; Path=/; Domain=github.com; Expires=Mon, 28 Dec 2026 07:03:19 GMT; HttpOnly; Secure; SameSite=Lax
x-github-request-id: ADF2:1533AA:4BDD206:5BD0971:6950D637
GitHub - cudabigdata/word2vec_cuda: GPU CUDA implementation of CBOW word2vec. Which carefully checked. 22x faster compare to single thread CPU.
Skip to content
Navigation Menu
{{ message }}
-
Notifications
You must be signed in to change notification settings - Fork 4
GPU CUDA implementation of CBOW word2vec. Which carefully checked. 22x faster compare to single thread CPU.
License
cudabigdata/word2vec_cuda
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
CUDA version of word2vec This CUDA version is carefully checked for correctness. Achieve about 2.8X faster than CPU-with 8 threads version. (22X faster compare to CPU single thread). Tools for computing distributed representtion of words ------------------------------------------------------ We provide an implementation of the Continuous Bag-of-Words (CBOW) and the Skip-gram model (SG), as well as several demo scripts. Given a text corpus, the word2vec tool learns a vector for every word in the vocabulary using the Continuous Bag-of-Words or the Skip-Gram neural network architectures. The user should to specify the following: - desired vector dimensionality - the size of the context window for either the Skip-Gram or the Continuous Bag-of-Words model - training algorithm: hierarchical softmax and / or negative sampling - threshold for downsampling the frequent words - number of threads to use - the format of the output word vector file (text or binary) Usually, the other hyper-parameters such as the learning rate do not need to be tuned for different training sets. The script demo-word.sh downloads a small (100MB) text corpus from the web, and trains a small word vector model. After the training is finished, the user can interactively explore the similarity of the words. More information about the scripts is provided at https://code.google.com/p/word2vec/
About
GPU CUDA implementation of CBOW word2vec. Which carefully checked. 22x faster compare to single thread CPU.
Resources
License
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published
You can’t perform that action at this time.