You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Please cite DES in your publications if it helps your research:
@inproceedings{zhang2018single,
title = {Single-Shot Object Detection with Enriched Semantics},
author = {Zhang, Zhishuai and Qiao, Siyuan and Xie, Cihang and Shen, Wei and Wang, Bo and Yuille, Alan L.},
booktitle = {CVPR},
year = {2018}
}
Build the code. Please follow Caffe instruction to install all necessary packages and build it.
# Modify Makefile.config according to your Caffe installation.
cp Makefile.config.example Makefile.config
make -j8
# Make sure to include $CAFFE_ROOT/python to your PYTHONPATH.
make py
make test -j8
# (Optional)
make runtest -j8
Download VOC2007 and VOC2012 dataset. By default, we assume the data is stored in $HOME/data/
# Download the data.cd$HOME/data
wget https://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
wget https://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar
wget https://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar
# Extract the data.
tar -xvf VOCtrainval_11-May-2012.tar
tar -xvf VOCtrainval_06-Nov-2007.tar
tar -xvf VOCtest_06-Nov-2007.tar
Create the LMDB file.
cd$CAFFE_ROOT# Create the trainval.txt, test.txt, and test_name_size.txt in data/VOC0712/
./data/VOC0712/create_list.sh
# You can modify the parameters in create_data.sh if needed.# It will create lmdb files for trainval and test with encoded original image:# - $HOME/data/VOCdevkit/VOC0712/lmdb/VOC0712_trainval_lmdb# - $HOME/data/VOCdevkit/VOC0712/lmdb/VOC0712_test_lmdb# and make soft links at examples/VOC0712/
./data/VOC0712/create_data.sh
Train/Eval
All .sh files in jobs folder are for training or evaluation. For training, use the models in initial_models to initialize weights. For evaluation, use the model links above to initialize weights.