You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Current code are assuming l_infinity constraint adversarial training and PreAct-ResNet-18 as a base model.
To change the option, simply modify the following configurations:
WideResNet-34-10: --model wrn3410
l_2 constraint: --distance L2
2.2. Training code
Standard cross-entropy training
# Standard cross-entropy
python train.py --mode ce --augment_type base --dataset <DATASET>
Adversarial training
# Adversarial training
python train.py --mode <ADV_TRAIN OPTION> --augment_type <AUGMENT> --dataset <DATASET>
# Example: Standard AT under CIFAR-10
python train.py --mode adv_train --augment_type base --dataset cifar10
Consistency regularization
# Consistency regularization
python train.py --consistency --mode <ADV_TRAIN OPTION> --augment_type <AUGMENT> --dataset <DATASET>
# Example: Consistency regularization based on standard AT under CIFAR-10
python train.py --consistency --mode adv_train --augment_type autoaug_sche --dataset cifar10
3. Evaluation
3.1. Evaluation option and description
The description for treat model is as follows:
<DISTANCE>: {Linf,L2,L1}, the norm constraint type
@inproceedings{tack2022consistency,
title={Consistency Regularization for Adversarial Robustness},
author={Jihoon Tack and Sihyun Yu and Jongheon Jeong and Minseon Kim and Sung Ju Hwang and Jinwoo Shin},
booktitle={AAAI Conference on Artificial Intelligence},
year={2022}
}
About
Consistency Regularization for Adversarial Robustness (AAAI 2022)