You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Spatio-Temporal SAR-Optical Data Fusion for Cloud Removal via a Deep Hierarchical Model
Authors: Alessandro Sebastianelli, Erika Puglisi, Maria Pia Del Rosso, Jamila Mifdal, Artur Nowakowki, Fiora Pirri, Pierre Philippe Mathieu and Silvia Liberata Ullo
PLEASE BE AWARE THAT THIS REPO IS CURRENTLY UNDER MAINTENANCE, WE ARE UPGRADING THE CODEA NEWER IMPLEMENTATION WILL APPEAR SOON
The proposed PLFM model combines a time-series of optical images and a SAR image to remove clouds from optical images.
Cloudy Image
Model Prediction
Ground Truth
Usage
To train the PLFM you can simply run
python main.py --train dataset_path
where dataset_path should contain 2 subfolders named "training" and "validation".
where dataset_path is the path to the test dataset.
Dataset
The dataset will be available soon.
Cite our papers
The dataset has been created using our tool proposed in:
@article{sebastianelli2021automatic,
title={Automatic dataset builder for Machine Learning applications to satellite imagery},
author={Sebastianelli, Alessandro and Del Rosso, Maria Pia and Ullo, Silvia Liberata},
journal={SoftwareX},
volume={15},
pages={100739},
year={2021},
publisher={Elsevier}
}
The PLFM is presented in
@article{sebastianelli2022clouds,
author={Sebastianelli, Alessandro and Puglisi, Erika and Del Rosso, Maria Pia and Mifdal, Jamila and Nowakowski, Artur and Mathieu, Pierre Philippe and Pirri, Fiora and Ullo, Silvia Libearata},
title={Spatio-Temporal SAR-Optical Data Fusion for Cloud Removal via a Deep Hierarchical Model},
journal={Submitted to IEEE Transactions on Geoscience and Remote Sensing},
publisher={IEEE},
note = {arXiv preprint arXiv:2106.12226. https://arxiv.org/abs/2106.12226}
}
About
Spatio-Temporal SAR-Optical Data Fusion for Cloud Removal via a Deep Hierarchical Model