You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
DeepFlux for Skeletons in the Wild, CVPR 2019 [Paper]
Citation
Please cite the related works in your publications if it helps your research:
@inproceedings{wang2019deepflux,
title={DeepFlux for Skeletons in the Wild},
author={Wang, Yukang and Xu, Yongchao and Tsogkas, Stavros and Bai, Xiang and Dickinson, Sven and Siddiqi, Kaleem},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
pages={5287--5296},
year={2019}
}
cp Makefile.config.example Makefile.config
# adjust Makefile.config (for example, enable python layer)
make all -j16
# make sure to include $CAFFE_ROOT/python to your PYTHONPATH.
make pycaffe
# download datasets and pretrained model then
mkdir data && mv [your_dataset_folder] data/
mkdir models && mv [your_pretrained_model] models/
# data augmentationcd data/[your_dataset_folder]
matlab -nodisplay -r "run augmentation.m; exit"
3. Training scripts
# an example on SK-LARGE datasetcd examples/DeepFlux/
python train.py --gpu [your_gpu_id] --dataset sklarge --initmodel ../../models/VGG_ILSVRC_16_layers.caffemodel
For training an end-to-end version of DeepFlux, adding the --e2e option.
4. Evaluation scripts
# an example on SK-LARGE datasetcd evaluation/
# inference with C++
./eval_cpp.sh ../../data/SK-LARGE/images/test ../../data/SK-LARGE/groundTruth/test ../../models/sklarge_iter_40000.caffemodel
# inference with Python
./eval_py.sh ../../data/SK-LARGE/images/test ../../data/SK-LARGE/groundTruth/test ../../models/sklarge_iter_40000.caffemodel
# inference with Python (end-to-end version)
./eval_py_e2e.sh ../../data/SK-LARGE/images/test ../../data/SK-LARGE/groundTruth/test ../../models/sklarge_iter_40000.caffemodel