SmartPAF: Accurate Low-Degree Polynomial Approximation of Non-polynomial Operators for Fast Private Inference in Homomorphic Encryption
SmartPAF is an open-source training framework to replace non-polynomial operators of ML models, such as ReLU and MaxPooling, with low-degree Polynomial Approximation Function (PAF) and recover accuracy through proposed fine-tuning tricks. SmartPAF is actively developed by the Synergy Lab at Georgia Institute of Technology. For more details about SmartPAF, please visit our paper.
Secure Fully Homomorphic Encryption (FHE) based Machine Learning Inference Converts Non-polynomial Operators (ReLU/MaxPooling) into Polynomial Approximation Functions (PAF)

Existing PAFs suffer from either prohibitive latency overhead or low accuracy. SmartPAF proposes four training techniques to enable exploration on the entire PAF degree space and spot high-accuracy low-latency PAF.

** This repo open-sourced the SmartPAF framework code with prerun results**.
SmartPAF spots optimal 14-degree PAF with 69.4% accuracy (the same accuracy as plaintext pretrained ResNet-18 under ImageNet-1k dataset) and saves 72% latency of 27-degree Minimax PAF.
| Model-Dataset | Technique Setup | \alpha=7 | ||||
|---|---|---|---|---|---|---|
| Replace ReLU | ||||||
| baseline + CT + DS w/o fine tune | 68.60% | 67.70% | 67.00% | 66.50% | 61.70% | |
| baseline + DS | 64.30% | 66.70% | 64.20% | 58.30% | 53.10% | |
| baseline + AT + DS | 65.20% | 68.30% | 63.70% | 60.50% | 52.00% | |
| 63.40% | 68.10% | 63.30% | 57.60% | 49.50% | ||
| ResNet-18 (ImageNet-1k) | baseline + PA + DS | 65.60% | {68.40%} | 64.60% | 60.20% | 52.60% |
| 69.4% | baseline + PA + AT + DS | 64.90% | 67.40% | 64.60% | 56.50% | 47.10% |
| baseline + CT + PA + DS | 68.20% | 67.00% | {67.60%} | 65.90% | 60.80% | |
| baseline + CT + PA + AT + DS | {69.00%} | 68.10% | 61.40% | {66.50%} | {63.10%} | |
| {Accuracy Improvement over Baseline} | 1.35$\times$ | 1.06$\times$ | 1.37$\times$ | 2.08$\times$ | 3.39$\times$ | |
| {Accuracy Improvement over ``baseline + DS"} | +4.7%(1.07$\times$) | +1.7%(1.03$\times$) | +3.4%(1.05$\times$) | +8.2%(1.14$\times$) | +10%(1.19$\times$) | |
| {Accuracy Improvement over baseline} | 1.07$\times$ | 1.03$\times$ | 1.05$\times$ | 1.14$\times$ | 1.19$\times$ | |
| ------------------------------------------- | ---------------------------------------------------------------------- | --------------------------------- | --------------------------------- | --------------------------------- | --------------------------------- | --------------------------------- |
| Replace all Non Polynomial Operators | ||||||
| baseline + CT + DS w/o fine tune | 64.4% | 59.4% | 40.9% | 33.1% | 13.3% | |
| baseline + DS | 59.6% | 66.2% | 62% | 49% | 37% | |
| ResNet-18 (ImageNet-1k) | baseline + SS ({prior work~\cite{Minimax_approximation}}) | 25.5% | 47.1% | 23% | 4.2% | 0% |
| 69.4% | baseline + CT + PA + AT + DS | {69.9%} | {68%} | {65.7%} | {64.1%} | {57.8}% |
| \smartfhe: baseline + CT + PA + AT + SS | 69.4% | 67% | 65.3% | 57.3% | 6.5% | |
| {Accuracy Improvement over Baseline} | 1.07$\times$ | 1.22$\times$ | 1.27$\times$ | 1.79$\times$ | 0.22$\times$ | |
| {Accuracy Improvement over~\cite{Minimax_approximation}} | +43.9%(2.72$\times$) | +19.9%(1.42$\times$) | +42.3%(2.84$\times$) | +53.1%(13.64$\times$) | +6.5%(\infty) | |
| ------------------------------------------- | ---------------------------------------------------------------------- | --------------------------------- | --------------------------------- | --------------------------------- | --------------------------------- | --------------------------------- |
| Replace all Non Polynomial Operators | ||||||
| baseline + SS ({prior work~\cite{Minimax_approximation}}) | 91.06% | 81.35% | 76.58% | 58.11% | 43.84% | |
| baseline + CT + DS | 93.39% | 93.6% | 93.3% | {92.4%} | {91.53%} | |
| VGG-19 (CiFa-10) | baseline + CT + PA + AT + DS | {93.6%} | {93.81%} | {93.59%} | 91.49% | 91.51% |
| 93.95 | \smartfhe: baseline + CT + PA + AT + SS | 92.16% | 92.62% | 91.51% | 88.45% | 76.93% |
| {Accuracy Improvement over Baseline} | 1.07$\times$ | 1.22$\times$ | 1.27$\times$ | 1.79$\times$ | 0.22$\times$ | |
| {Accuracy Improvement over~\cite{Minimax_approximation}} | +1.1%(1.01$\times$) | +11.27%(1.14$\times$) | +14.93%(1.2$\times$) | +30.34%(1.52$\times$) | +33.09%(1.75$\times$) | |
| ------------------------------------------- | ---------------------------------------------------------------------- | --------------------------------- | --------------------------------- | --------------------------------- | --------------------------------- | --------------------------------- |
#Activate Conda
# Create a python3.8 enviroment
conda create --name SmartPAF python=3.8
# Activate the enviroment
conda activate SmartPAF
# Install package
conda install pytorch torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia
conda install -c conda-forge pytorch-lightning
# Download cifar10 pretrained models
cd PyTorch_CIFAR10/
sh download_weights.sh
cd ..
# Open /global_config/global_config.yaml
#Edit "dataset_dirctory:" to set a folder to store dataset.
# Download dataset
python3 util.py -dd True --dataset cifar10
python3 util.py -dd True --dataset cifar100
python3 util.py -dd True --dataset imagenet_1k
typical step
For one model with a dataset, one -wd (working directory) should be used
--model: resnet18, vgg19_bn, resnet32
--dataset: cifar10, imagenet, cifar100
-st: a7, 2f12g1, f2f2, f2g3, f1g2
Supported combination: vgg19_bn & imagenet, vgg19_bn & cifar10, resnet18 & imagenet, and resnet32 & cifar100
-st is the supported PAF type
-dc stands for "data collection":
# The following steps must be run in serial, as following steps need results from previous steps.
# Collection CT data
python3 ./CT.py --model resnet18 --dataset imagenet_1k -wd ../resnet18_imagenet1k/ -dc True
# CT
python3 ./CT.py --model resnet18 --dataset imagenet_1k -wd ../resnet18_imagenet1k/ -st 2f12g1
# PA and AT
python3 ./PA_AT.py --model resnet18 --dataset imagenet_1k -wd ../resnet18_imagenet1k/ -st 2f12g1
# Statistic Scale.
python3 ./SS.py --model resnet18 --dataset imagenet_1k -wd ../resnet18_imagenet1k/ -st 2f12g1
# The following steps must be run in serial, as following steps need results from previous steps.
# Collection CT data
python3 ./CT.py --model resnet32 --dataset cifar100 -wd ../resnet32_cifar100/ -dc True
# CT
python3 ./CT.py --model resnet32 --dataset cifar100 -wd ../resnet32_cifar100/ -st 2f12g1
# PA and AT
python3 ./PA_AT.py --model resnet32 --dataset cifar100 -wd ../resnet32_cifar100/ -st 2f12g1
# Statistic Scale.
python3 ./SS.py --model resnet32 --dataset cifar100 -wd ../resnet32_cifar100/ -st 2f12g1
# The following steps must be run in serial, as following steps need results from previous steps.
# Collection CT data
python3 ./CT.py --model vgg19_bn --dataset cifar10 -wd ../vgg19_bn_cifar10/ -dc True
# CT
python3 ./CT.py --model vgg19_bn --dataset cifar10 -wd ../vgg19_bn_cifar10/ -st 2f12g1
# PA and AT
python3 ./PA_AT.py --model vgg19_bn --dataset cifar10 -wd ../vgg19_bn_cifar10/ -st 2f12g1
# Statistic Scale.
python3 ./SS.py --model vgg19_bn --dataset cifar10 -wd ../vgg19_bn_cifar10/ -st 2f12g1
# The following steps must be run in serial, as following steps need results from previous steps.
# Collection CT data
python3 ./CT.py --model vgg19_bn --dataset imagenet_1k -wd ../vgg19_bn_imagenet1k/ -dc True
# CT
python3 ./CT.py --model vgg19_bn --dataset imagenet_1k -wd ../vgg19_bn_imagenet1k/ -st 2f12g1
# PA and AT
python3 ./PA_AT.py --model vgg19_bn --dataset imagenet_1k -wd ../vgg19_bn_imagenet1k/ -st 2f12g1
# Statistic Scale.
python3 ./SS.py --model vgg19_bn --dataset imagenet_1k -wd ../vgg19_imagenet1k/ -st 2f12g1
Jingtian Dang (Georgia Tech, dangjingtian@gatech.edu)
Jianming Tong (Georgia Tech, jianming.tong@gatech.edu)
Tushar Krishna (Georgia Tech)
@inproceedings{tong2024accurate,
author={Jianming Tong and Jingtian Dang and Anupam Golder and Callie Hao and Arijit Raychowdhury and Tushar Krishna},
booktitle = {Proceedings of Machine Learning and Systems (MLSys)},
title={Accurate Low-Degree Polynomial Approximation of Non-polynomial Operators for Fast Private Inference in Homomorphic Encryption},
url = {https://arxiv.org/abs/2404.03216},
year = {2024}
}