You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Introduction and scripts for the paper "PartImageNet: A Large, High-Quality Dataset of Parts" (Ju He, Shuo Yang, Shaokang Yang, Adam Kortylewski, Xiaoding Yuan, Jie-Neng Chen, Shuai Liu, Cheng Yang, Alan Yuille).
PartImageNet_OOD, which is used in the Few-shot Learning experiments in the paper (Sec 4.3). In this split, train/val/test sets have different classes so it is suitable to conduct research on out-of-distribution and few-shot learning problems. (This is also the original released split.)
The dataset is ready!
Our annotations strictly follow the coco style so it should be easy to use the cocoapi for visulization the images and annotations.
If you find our work helpful in your research, please cite it as:
@article{he2021partimagenet,
title={PartImageNet: A Large, High-Quality Dataset of Parts},
author={He, Ju and Yang, Shuo and Yang, Shaokang and Kortylewski, Adam and Yuan, Xiaoding and Chen, Jie-Neng and Liu, Shuai and Yang, Cheng and Yuille, Alan},
journal={arXiv preprint arXiv:2112.00933},
year={2021}
}
Introduction
PartImageNet is a large, high-quality dataset with part segmentation annotations. It consists of 158 classes from ImageNet with approximately 24′000 images. The classes are grouped into 11 super-categories and the parts split are designed according to the super-category as shown below. The number in the brackets after the category name indicates the total number of classes of the category.
Category
Annotated Parts
Quadruped (46)
Head, Body, Foot, Tail
Biped (17)
Head, Body, Hand, Foot, Tail
Fish (10)
Head, Body, Fin, Tail
Bird (14)
Head, Body, Wing, Foot, Tail
Snake (15)
Head, Body
Reptile (20)
Head, Body, Foot, Tail
Car (19)
Body, Tier, Side Mirror
Bicycle (6)
Head, Body, Seat, Tier
Boat (4)
Body, Sail
Aeroplane (2)
Head, Body, Wing, Engine, Tail
Bottle (5)
Body, Mouth
The statistics of train/val/test split is shown below.
Split
Number of classes
Number of images
Train
109
16540
Val
19
2957
Test
30
4598
Total
158
24095
For more detailed statistics, please check out our paper.
Possible Usage
PartImageNet has broad potential in and can be benefit to numerious research fields while we simply explore its usage in Part Discovery, Few-shot Learning and Semantic Segmentation in the paper. We hope that with the propose of the PartImageNet, we could attarct more attention to the part-based models and yield more interesting works.
Example Figures
About
Introduction and scripts for the paper "PartImageNet: A Large, High-Quality Dataset of Parts" (Ju He, Shuo Yang, Shaokang Yang, Adam Kortylewski, Xiaoding Yuan, Jie-Neng Chen, Shuai Liu, Cheng Yang, Alan Yuille).