vedaseg is an open source semantic segmentation toolbox based on PyTorch.
-
Modular Design
We decompose the semantic segmentation framework into different components. The flexible and extensible design make it easy to implement a customized semantic segmentation project by combining different modules like building Lego.
-
Support of several popular frameworks
The toolbox supports several popular semantic segmentation frameworks out of the box, e.g. DeepLabv3+, DeepLabv3, U-Net, PSPNet, FPN, etc.
-
High efficiency
Multi-GPU data parallelism & distributed training.
-
Multi-Class/Multi-Label segmentation
We implement multi-class and multi-label segmentation(where a pixel can belong to multiple classes).
-
Acceleration and deployment
Models can be accelerated and deployed with TensorRT.
This project is released under the Apache 2.0 license.
Note: All models are trained only on PASCAL VOC 2012 trainaug dataset and evaluated on PASCAL VOC 2012 val dataset.
| Architecture | backbone | OS | MS & Flip | mIOU |
|---|---|---|---|---|
| DeepLabv3plus | ResNet-101 | 16 | True | 79.46% |
| DeepLabv3plus | ResNet-101 | 16 | False | 77.90% |
| DeepLabv3 | ResNet-101 | 16 | True | 79.22% |
| DeepLabv3 | ResNet101 | 16 | False | 77.08% |
| FPN | ResNet-101 | 4 | True | 77.05% |
| FPN | ResNet-101 | 4 | False | 75.64% |
| PSPNet | ResNet-101 | 8 | True | 78.39% |
| PSPNet | ResNet-101 | 8 | False | 77.30% |
| PSPNet | ResNet_v1c-101 | 8 | True | 79.88% |
| PSPNet | ResNet_v1c-101 | 8 | False | 78.85% |
| U-Net | ResNet-101 | 1 | True | 74.58% |
| U-Net | ResNet-101 | 1 | False | 72.59% |
OS: Output stride used during evaluation.
MS: Multi-scale inputs during evaluation.
Flip: Adding horizontal flipped inputs during evaluation.
ResNet_v1c: Modified stem from original ResNet, as shown in Figure 2(b) in
this paper.
Models above are available in the GoogleDrive.
- Linux
- Python 3.6+
- PyTorch 1.4.0 or higher
- CUDA 9.0 or higher
We have tested the following versions of OS and softwares:
- OS: Ubuntu 16.04.6 LTS
- CUDA: 10.2
- PyTorch 1.4.0
- Python 3.6.9
- Create a conda virtual environment and activate it.
conda create -n vedaseg python=3.6.9 -y
conda activate vedaseg- Install PyTorch and torchvision following the official instructions, e.g.,
conda install pytorch torchvision -c pytorch- Clone the vedaseg repository.
git clone https://github.com/Media-Smart/vedaseg.git
cd vedaseg
vedaseg_root=${PWD}- Install dependencies.
pip install -r requirements.txtDownload Pascal VOC 2012 and Pascal VOC 2012 augmented (you can get details at Semantic Boundaries Dataset and Benchmark), resulting in 10,582 training images(trainaug), 1,449 validatation images.
cd ${vedaseg_root}
mkdir ${vedaseg_root}/data
cd ${vedaseg_root}/data
wget https://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
wget https://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/semantic_contours/benchmark.tgz
tar xf VOCtrainval_11-May-2012.tar
tar xf benchmark.tgz
python ../tools/encode_voc12_aug.py
python ../tools/encode_voc12.py
mkdir VOCdevkit/VOC2012/EncodeSegmentationClass
#cp benchmark_RELEASE/dataset/encode_cls/* VOCdevkit/VOC2012/EncodeSegmentationClass
(cd benchmark_RELEASE/dataset/encode_cls; cp * ${vedaseg_root}/data/VOCdevkit/VOC2012/EncodeSegmentationClass)
#cp VOCdevkit/VOC2012/EncodeSegmentationClassPart/* VOCdevkit/VOC2012/EncodeSegmentationClass
(cd VOCdevkit/VOC2012/EncodeSegmentationClassPart; cp * ${vedaseg_root}/data/VOCdevkit/VOC2012/EncodeSegmentationClass)
comm -23 <(cat benchmark_RELEASE/dataset/{train,val}.txt VOCdevkit/VOC2012/ImageSets/Segmentation/train.txt | sort -u) <(cat VOCdevkit/VOC2012/ImageSets/Segmentation/val.txt | sort -u) > VOCdevkit/VOC2012/ImageSets/Segmentation/trainaug.txtTo avoid tedious operations, you could save the above linux commands as a shell file and execute it.
Download the COCO-2017 dataset.
cd ${vedaseg_root}
mkdir ${vedaseg_root}/data
cd ${vedaseg_root}/data
mkdir COCO2017 && cd COCO2017
wget -c https://images.cocodataset.org/zips/train2017.zip
unzip train2017.zip && rm train2017.zip
wget -c https://images.cocodataset.org/zips/val2017.zip
unzip val2017.zip && rm val2017.zip
wget -c https://images.cocodataset.org/annotations/annotations_trainval2017.zip
unzip annotations_trainval2017.zip && rm annotations_trainval2017.zipThe folder structure should similar as following:
data
├── COCO2017
│ ├── annotations
│ │ ├── instances_train2017.json
│ │ ├── instances_val2017.json
│ ├── train2017
│ ├── val2017
│── VOCdevkit
│ │ ├── VOC2012
│ │ │ ├── JPEGImages
│ │ │ ├── SegmentationClass
│ │ │ ├── ImageSets
│ │ │ │ ├── Segmentation
│ │ │ │ │ ├── trainaug.txt
│ │ │ │ │ ├── val.txt
- Config
Modify configuration files in configs/ according to your needs(e.g. configs/voc_unet.py).
The major configuration difference between single-label and multi-label training lies in: nclasses, multi_label, metricsand criterion. You can take configs/coco_multilabel_unet.py as a reference. Currently, multi-label training is only supported in COCO data format.
- Ditributed training
# train pspnet using GPUs with gpu_id 0, 1, 2, 3
./tools/dist_train.sh configs/voc_pspnet.py "0, 1, 2, 3" - Non-distributed training
python tools/train.py configs/voc_unet.pySnapshots and logs by default will be generated at ${vedaseg_root}/workdir/name_of_config_file(you can specify workdir in config files).
- Config
Modify configuration as you wish(e.g. configs/voc_unet.py).
- Ditributed testing
# test pspnet using GPUs with gpu_id 0, 1, 2, 3
./tools/dist_test.sh configs/voc_pspnet.py path/to/checkpoint.pth "0, 1, 2, 3" - Non-distributed testing
python tools/test.py configs/voc_unet.py path/to/checkpoint.pth- Config
Modify configuration as you wish(e.g. configs/voc_unet.py).
- Run
# visualize the results in a new window
python tools/inference.py configs/voc_unet.py checkpoint_path image_file_path --show
# save the visualization results in folder which named with image prefix, default under folder './result/'
python tools/inference.py configs/voc_unet.py checkpoint_path image_file_path --out folder_name- Convert to ONNX
Firstly, install volksdep following the official instructions.
Then, run the following code to convert PyTorch to ONNX. The input shape format is CxHxW.
If you need the ONNX model with dynamic input shape, please add --dynamic_shape in the end.
python tools/torch2onnx.py configs/voc_unet.py weight_path out_path --dummy_input_shape 3,513,513 --opset_version 11Here are some known issues:
- Currently PSPNet model is not supported because of the unsupported operation
AdaptiveAvgPool2d. - Default ONNX opset version is 9 and PyTorch Upsample operation is only supported
with specified size, nearest mode and align_corners being None.
If bilinear mode and align_corners are wanted, please add
--opset_version 11when usingtorch2onnx.py.
- Inference SDK
Firstly, install flexinfer and see the example for details.
This repository is currently maintained by Yuxin Zou (@YuxinZou), Tianhe Wang(@DarthThomas), Hongxiang Cai (@hxcai), Yichao Xiong (@mileistone).