Francesco Argenziano1,# ·
Miguel Saavedra-Ruiz2,3,# ·
Sacha Morin2,3 ·
Daniele Nardi1 ·
Liam Paull2,3
1Department of Computer, Control and Management Engineering, Sapienza University of Rome, Italy
2DIRO, Université de Montréal, Montréal, QC, Canada · 3Mila - Quebec AI Institute, Montréal, QC, Canada
#Co‑first authors
Official code release for the paper Dynamic Objects Relocalization in Changing Environments with Flow Matching (code‑name: FlowMaps).
- Installation
- Dataset Generation (FlowSim)
- Configuration
- Training & Logging
- Evaluation & Reproducing Results
- Citation
- License
# 1) Clone
git clone https://github.com/Fra-Tsuna/flowmaps
cd flowmaps
# 2) Create an environment (example with conda) and install deps
conda create -n flowmaps python=3.13 -y
conda activate flowmaps
pip install -r requirements.txtTo generate datasets with FlowSim:
python3 data.pyThis creates training/validation data according to config/config.yaml.
We use a Hydra‑style syntax for overrides (key=value). You can edit config/config.yaml directly or pass overrides at the CLI.
python3 data.py n_env_train=200 n_env_val=20 max_timesteps=20 stochastic=trueKey parameters:
n_env_train,n_env_val: number of training and validation environments (respectively).max_timesteps: time horizon of object trajectories.stochastic: enable stochastic object behavior.size: environment canvas size.max_tables,min_each: number of furniture instances and minimum per type.display_scale: visualization only; upscales the rendered image. Underlying data remain at size×size.
Our project supports Weights & Biases logging.
- Online (default below):
python3 main.py wandb.mode=online wandb.project=YOUR_PROJECT wandb.entity=YOUR_ENTITY wandb.tags="[flowmaps,cdit]" experiment=cdit - Offline:
python3 main.py wandb.mode=offline experiment=cdit
To train the MLP baseline, simply override experiment=mlp
After training, place your checkpoint file in ckpt/ and run:
python3 eval.py checkpoint_name=YOUR_CHECKPOINT_FILENAMEIf you find this work useful, please cite the paper:
@misc{argenziano2025dynamicobjectsrelocalizationchanging,
title={Dynamic Objects Relocalization in Changing Environments with Flow Matching},
author={Francesco Argenziano and Miguel Saavedra-Ruiz and Sacha Morin and Daniele Nardi and Liam Paull},
year={2025},
eprint={2509.16398},
archivePrefix={arXiv},
primaryClass={cs.RO},
url={https://arxiv.org/abs/2509.16398},
}This repository is released under the MIT License. See LICENSE for details.