You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Note the location of the dataset and the base models. Update the paths for the base models accordingly in RExL/explainableAI/utils/models.py. The pretrained models are taken from here. These models are in caffe so these must be converted to pytorch.
Training Instructions
Run RExL/train.py with the following arguments:
-rp or --root_path : Root path for the Dataset
-m or --model : Model type resnet or vgg
-ci or --class_index : Class index for the class on which the agent is to be trained (-1 if training Dataset Specific)
-d or --dataset : Dataset Name eg: PASCAL, MSCOCO or IMAGENET
-dt or --dataset_type: Dataset type, eg: train or val or test
-tl or --tensorboard_log_dir: Path for tensorboard logs
-sp or --save_path: Path to save the trained policy
-nt or --num_timesteps: Number of training steps
-si or --save_interval: Interval to periodically save the policy
-lp or --load_path: Path to load a previously trained policy, Default: None i.e not applicable
-vp or --video_path: Path to store the images for each step. Default: None i.e. not applicable
-i or --idx: Id of a specific image to be trained on (RExL-IS)
Evaluating Instructions
Run RExL/evaluate.py with the following arguments:
-rp or --root_path : Root path for the Dataset
-m or --model : Model type resnet or vgg
-ci or --class_index : Class index for the class on which the agent is to be trained (-1 if training Dataset Specific)
-d or --dataset : Dataset Name eg: PASCAL, MSCOCO or IMAGENET
-dt or --dataset_type: Dataset type, eg: train or val or test
-lp or --load_path: Path to load a previously trained policy, Default: None i.e not applicable
-bs or --batch_size: Batch size for running causal metrics
-v or --verbose: 0 (Default) if saliency maps are not saved and 1 to save saliency maps. -v=1 works with -bs=1 only.
-ip or --image_path: Path to save the images
-log or --log_path: Path to save the image wise logs
-i or --idx: Id of a specific image to be trained on (RExL-IS)
About
Official code for the paper, "Reinforcement Explanation Learning"