| CARVIEW |
Select Language
HTTP/2 200
server: GitHub.com
content-type: text/html; charset=utf-8
last-modified: Wed, 12 Nov 2025 17:46:43 GMT
access-control-allow-origin: *
strict-transport-security: max-age=31556952
etag: W/"6914c803-7956"
expires: Mon, 29 Dec 2025 22:47:50 GMT
cache-control: max-age=600
content-encoding: gzip
x-proxy-cache: MISS
x-github-request-id: 2E82:234FE9:96FC08:A95151:695302BE
accept-ranges: bytes
age: 0
date: Mon, 29 Dec 2025 22:37:50 GMT
via: 1.1 varnish
x-served-by: cache-bom-vanm7210047-BOM
x-cache: MISS
x-cache-hits: 0
x-timer: S1767047870.402871,VS0,VE217
vary: Accept-Encoding
x-fastly-request-id: b6cf05d46c3a910301a1f88266636a6029606f04
content-length: 9186
Webpage of Erwan Scornet
Contact
Erwan Scornet, professor at Sorbonne University
Statistic, Machine Learning
Short Bio
Since september 2023, I am a professor (lecturer) at LPSM and SCAI in Sorbonne Université (previously known as Paris 6, in the center of Paris). Before that, I was an assistant professor at the Center for Applied Mathematics (CMAP) in Ecole Polytechnique near Paris. My research interests focus on theoretical statistics and Machine Learning, with a particular emphasis on nonparametric estimates. I did my PhD thesis on a particular algorithm of Machine Learning called random forests, under the supervision of Gérard Biau (LSTA - Paris 6) and Jean-Philipe Vert (Institut Curie).
Keywords: statistical learning, non-parametric estimation, random forests, decision trees, variable importance, missing data, neural networks, causal inference.
Curriculum Vitae
Google Scholar
Awards and distinctions
- Winner of the Jacques Neveu 2016 Prize for a thesis in the field of probability or statistic.
Students
-
Jaouad Mourtada (2016-2020)
Ph.D. student co-supervised with Stéphane Gaïffas -
Nicolas Prost (2018-2019)
Ph.D. student co-supervised with Julie Josse and Gaël Varoquaux -
Clément Bénard (2018-2021)
Ph.D. student co-supervised with Gérard Biau and Sébastien Da Veiga -
Ludovic Arnould (2020-2023)
Ph.D. student co-supervised with Claire Boyer -
Bénédicte Colnet (2020-2023)
Ph.D. student co-supervised with Julie Josse and Gaël Varoquaux -
Alexis Ayme (2021-2024)
Ph.D. student co-supervised with Claire Boyer and Aymeric Dieuleveut -
Abdoulaye Sakho (2023-)
Ph.D. student (CIFRE at Artefact) co-supervised with Emmanuel Malherbe -
Ahmed Boughdiri (2023-)
Ph.D. student co-supervised with Julie Josse -
Agathe Chabassier (2025-)
Ph.D. student co-supervised with Julie Josse
Publications
Preprints
- B. Colnet, J. Josse, G. Varoquaux, E. Scornet. Risk ratio, odds ratio, risk difference... Which causal measure is easier to generalize? , 2023.
- A. Sakho, E. Malherbe, E. Scornet. Do we need rebalancing strategies? A theoretical and empirical study around SMOTE and its variants. , 2024.
- J. Naf, J. Josse, E. Scornet. What Is a Good Imputation Under MAR Missingness , 2024.
- E. Scornet, G. Hooker Theory of Random Forests: A Review. , 2025.
- C. Berenfeld, A. Boughdiri, B. Colnet, W. A. C. van Amsterdam, A. Bellet, R. Khellaf, E. Scornet, J. Josse Causal Meta-Analysis: Rethinking the Foundations of Evidence-Based Medicine. , 2025.
- M. Mayala, E. Scornet, C. Tillier, O. Wintenberger Asymptotic Normality of Infinite Centered RandomForests - Application to Imbalanced Classification. , 2025. Slides
- C. Muller, J. Josse, E. Scornet When Pattern-by-Pattern Works: Theoretical and Empirical Insights for Logistic Models with Missing Values. , 2025.
- J. Näf, K. Grzesiak, E. Scornet How to rank imputation methods? , 2025.
Accepted/Published papers
- Scornet, E., Biau, G. and Vert, J.-P. (2015). Consistency of random forests, The Annals of Statistics, Vol. 43, pp. 1716-1741 (Supplementary materials ).
- Scornet, E. (2016). On the asymptotics of random forests, Journal of Multivariate Analysis, Vol. 146, pp. 72-83.
- Scornet, E. (2016). Random forests and kernel methods, IEEE Transactions on Information Theory, Vol. 62, pp. 1485-1500.
- Biau, G., Scornet, E. (2016). A Random Forest Guided Tour, TEST, Vol. 25, pp. 197-227. ( Discussion ).
- Scornet, E. (2016). Promenade en forêts aléatoires, MATAPLI, Vol. 111.
- E. Bernard, Y. Jiao, E. Scornet, V. Stoven, T. Walter and J.-P. Vert (2017) Kernel multitask regression for toxicogenetics, Molecular Informatics, Vol. 36.
- J. Mourtada, S. Gaïffas, E. Scornet, (2017) Universal consistency and minimax rates for online Mondrian Forest, NIPS 2017 (Supplementary materials ).
- Scornet, E. (2017). Tuning parameters in random forests, ESAIM Procs, Vol. 60 pp. 144-162.
- R. Duroux, E. Scornet (2018) Impact of subsampling and tree depth on random forests, ESAIM: Probability and Statistics, Vol. 22, pp. 96-128.
- G. Biau, E. Scornet, J. Welbl, (2018) Neural Random Forests , Sankhya A, pp. 1-40.
- J. Mourtada, S. Gaïffas, E. Scornet (2020) Minimax optimal rates for Mondrian trees and forests , The Annals of Statistics, 48(4), 2253-2276.
- M. Le Morvan, N. Prost, J. Josse, E. Scornet. & G. Varoquaux (2020) Linear predictor on linearly-generated data with missing values: non consistency and solutions , AISTAT.
- M. Le Morvan, J. Josse, T. Moreau, E. Scornet, G. Varoquaux (2020) Neumann networks: differential programming for supervised learning with missing values , NeurIPS (oral communication).
- C. Bénard, G. Biau, S. Da Veiga, E. Scornet (2021) SIRUS: Stable and Interpretable RUle Set for Classification , Electronic Journal of Statistics, Vol. 15, pp. 427-505.
- C. Bénard, G. Biau, S. Da Veiga, E. Scornet (2021). Interpretable Random Forests via Rule Extraction , AISTAT.
- J. Mourtada, S. Gaïffas, E. Scornet (2021). AMF: Aggregated Mondrian Forests for Online Learning , Journal of the Royal Statistical Society: Series B (Statistical Methodology), 83(3), 505-533.
- L. Arnould, C. Boyer, E. Scornet (2021). Analyzing the tree-layer structure of Deep Forests , ICML.
- M. Le Morvan, J. Josse, E. Scornet, G. Varoquaux (2021). What's a good imputation to predict with missing values? , NeurIPS.
- E. Scornet (2021). Trees, forests, and impurity-based variable importance , Annales de l’Institut Henri Poincaré
- C. Bénard, G. Biau, S. Da Veiga, E. Scornet (2022). SHAFF: Fast and consistent SHApley eFfect estimates via random Forests , AISTAT.
- C. Bénard, S. Da Veiga, E. Scornet (2022). MDA for random forests: inconsistency, and a practical solution via the Sobol-MDA , Biometrika.
- A. Ayme, C. Boyer, A. Dieuleveut, E. Scornet (2022). Near-optimal rate of consistency for linear models with missing values , ICML.
- B. Colnet, J. Josse, E. Scornet, G. Varoquaux (2022). Generalizing a causal effect: sensitivity analysis and missing covariates , Journal of Causal Inference.
- L. Arnould, C. Boyer, E. Scornet (2023). Is interpolation benign for regression random forests? , AISTAT.
- P. Lutz, L. Arnould, C. Boyer, E. Scornet (2023). Sparse tree-based initialization for neural networks , ICLR.
- A. Ayme, C. Boyer, A. Dieuleveut, E. Scornet (2023). Naive imputation implicitly regularizes high-dimensional linear models , ICML.
- J. Josse, J.M. Chen, N. Prost, E. Scornet, G. Varoquaux (2024, first submission in 2019). On the consistency of supervised learning with missing values , Statistical Papers.
- B. Colnet, J. Josse, G. Varoquaux, E. Scornet (2024). Reweighting the RCT for generalization: finite sample analysis and variable selection , JRSS-A.
- A. Ayme, C. Boyer, A. Dieuleveut, E. Scornet (2024). Random features models: a way to study the success of naive imputation , ICML.
- A.D. Reyero Lobo, A. Ayme, C. Boyer, E. Scornet (2025). A primer on linear classification with missing data , AISTAT.
- A. Boughdiri, J. Josse, E. Scornet (2025). Quantifying Treatment Effects: Estimating Risk Ratios via Observational Studies , ICML.
- A. Sakho, E. Malherbe, C.-E. Gauthier, E. Scornet (2025). Harnessing Mixed Features for Imbalance Data Oversampling: Application to Bank Customers Scoring. , accepted at ECML-PKDD 2025 Applied Data Science track.
- A. Boughdiri, C. Berenfeld, J. Josse, E. Scornet (2025) A Unified Framework for the Transportability of Population-Level Causal Measures. , NeurIPS.
Book
- B. Iooss, R. Kenett, P. Secchi, B.M. Colosimo, F. Centofanti, C. Bénard, S. Da Veiga, E. Scornet, S. N. Wood, Y. Goude, M. Fasiolo Interpretability for Industry 4.0 : Statistical and Machine Learning Approaches , Editors: A. Lepore, B. Palumbo, J.-M. Poggi, Springer 2022.
Academic publications
- PhD thesis Learning with random forests, defended on Monday, 30th November, 2015.
- HDR manuscript Random forests, interpretability, neural networks and missing values, defended on the 17th December, 2020.
Teaching
- Decision Trees: Slides and lectures in English or in French
- Random Forests and Tree Boosting: Slides and lectures in English or in French
- Introduction to neural networks: Slides and lectures in English or in French
- Hyperparameter tuning in neural networks: Slides and lectures in English or in French
- Convolutional Neural Networks: Slides and lectures in English
- Applications of Convolutional Neural Networks: Slides and lectures in English
- Recurrent Neural Networks: Slides and lectures in English
- A detour through unsupervised learning: Slides and lectures in English
- Generative Models: Slides and lectures in English
- Word Embedding Some slides in construction
Statistics and Video games - Stone's theorem
- You need to download the corresponding game package (Mac or PC) and launch the .exe file (you may need to download RenPy ).
- Stone's theorem (statement)
- Game package for Mac
- Game package for PC
Talks
- Random Forests
- General overview of AI
- Ai for health
- Trees, forests, and impurity-based variable importance
- Is interpolation benign for random forest regression? Paper here
- Pour une botanomancie rigoureuse: lire l'importance dans les feuilles des forêts (aléatoires) et en extraire des préceptes élémentaires., StatLearn23
- Overview of missing data TP and solution
- Interpretability via tree-based methods
- Email: prenom.nom@po-ly-tech-ni-que.edu (without hyphens).
- Office 214, Tour 15-25, Jussieu Campus.