| CARVIEW |
Select Language
HTTP/2 301
server: GitHub.com
content-type: text/html
location: https://ericcsr.github.io/DiffSRL/
x-github-request-id: 395B:3827E5:9BF67F:AF2CE7:69536DC1
accept-ranges: bytes
age: 0
date: Tue, 30 Dec 2025 06:14:26 GMT
via: 1.1 varnish
x-served-by: cache-bom-vanm7210092-BOM
x-cache: MISS
x-cache-hits: 0
x-timer: S1767075266.076692,VS0,VE198
vary: Accept-Encoding
x-fastly-request-id: 8b435f860addef793aadfca7092e1c8103776a3e
content-length: 162
HTTP/2 200
server: GitHub.com
content-type: text/html; charset=utf-8
last-modified: Mon, 04 Apr 2022 09:22:43 GMT
access-control-allow-origin: *
strict-transport-security: max-age=31556952
etag: W/"624ab8e3-202e"
expires: Tue, 30 Dec 2025 06:24:26 GMT
cache-control: max-age=600
content-encoding: gzip
x-proxy-cache: MISS
x-github-request-id: A291:444BC:9C059D:AF271D:69536DC1
accept-ranges: bytes
date: Tue, 30 Dec 2025 06:14:26 GMT
via: 1.1 varnish
age: 0
x-served-by: cache-bom-vanm7210092-BOM
x-cache: MISS
x-cache-hits: 0
x-timer: S1767075266.288749,VS0,VE240
vary: Accept-Encoding
x-fastly-request-id: 7d638be3dc8bd157bdbfe17ef48be2a5d53023c1
content-length: 2449
DiffSRL: Learning Dynamic-Aware State representation for Control via Differentiable Simulation | DiffSRL
Project maintained by Ericcsr Hosted on GitHub Pages — Theme by mattgraham
DiffSRL
Official Project Webpage for paper "DiffSRL: Learning Dynamic-aware State Representation for Control via Differentiable Simulation"
Project maintained by Ericcsr Hosted on GitHub Pages — Theme by mattgraham
DiffSRL: Learning Dynamic-Aware State representation for Control via Differentiable Simulation
Pre-released code bug expected.
Install
- Run
cd ChamferDistancePytorch - Install
python3 -m pip install -e . - Run
cd .. - Install
python3 -m pip install -e .
Enjoy the pretrained model
Model Free Reinforcement Learning on Chopsticks or Rope
- Run
python3 -m plb.algorithms.solve --algo td3 --env_name [Chopsticks-v1/Rope-v1] --exp_name enjoy --model_name rope/encoder --renderModel Based Policy Optimization on Chopsticks or Rope
- Run
python3 -m plb.algorithms.solve --algo torch_nn --env_name [Chopsticks-v1/Rope-v1] --exp_name enjoy --model_name rope/encoder --render
Training new model
Collect data from new environment
- Run
python3 -m plb.algorithms.solve --algo collect --env_name [EnvName-version] --exp_name [new_environment]Which will collect raw data and stored inraw_datafolder. - Run
python3 preprocess.py --dir raw_data/[new_environment]to pre-process data and the preprocessed npz file will be stored in data with the name of[new_environment].Running State Representation learning using new dataset
- Run
python3 plb.algorithms.solve --env_name [EnvName-version] --exp_name [EnvName-version] --exp_name learn_latent --lr 1e-5The encoder weight will be saved inpretrained_model
Environment Setup
Simulation Experiment results
All experiment result are rendered from policy trained with MBPO
- Picking up a rope
- Wrapping a rope around a cylinder
Real world Experiments Result
Rope Experiment (The coordinate frame has been flipped to avoid occlusion)
Chopsticks Experiment
More Simulated Experiment Result (Reward Curve)