HTTP/2 301
date: Sun, 18 Jan 2026 09:57:26 GMT
content-length: 0
location: https://doi.org/10.1101/385849
server: cloudflare
vary: Origin
expires: Mon, 19 Jan 2026 09:57:26 GMT
permissions-policy: interest-cohort=(),browsing-topics=()
cf-cache-status: DYNAMIC
nel: {"report_to":"cf-nel","success_fraction":0.0,"max_age":604800}
strict-transport-security: max-age=31536000; includeSubDomains; preload
report-to: {"group":"cf-nel","max_age":604800,"endpoints":[{"url":"https://a.nel.cloudflare.com/report/v4?s=2w2gQapt1RA1sEm0nGNEohjp7smhL9AYyJIhzQmhHIOXLeLiNcwWzkz6FESCoP7P20ugwr5vqzD7PUnTfVVK4T0tA1l2Og%3D%3D"}]}
cf-ray: 9bfd3a66cd11f313-BLR
alt-svc: h3=":443"; ma=86400
HTTP/2 302
date: Sun, 18 Jan 2026 09:57:26 GMT
content-type: text/html;charset=utf-8
location: https://biorxiv.org/lookup/doi/10.1101/385849
server: cloudflare
vary: Origin
vary: Accept
expires: Sun, 18 Jan 2026 10:10:59 GMT
permissions-policy: interest-cohort=(),browsing-topics=()
cf-cache-status: DYNAMIC
nel: {"report_to":"cf-nel","success_fraction":0.0,"max_age":604800}
strict-transport-security: max-age=31536000; includeSubDomains; preload
report-to: {"group":"cf-nel","max_age":604800,"endpoints":[{"url":"https://a.nel.cloudflare.com/report/v4?s=c1AnUTgt6pcf6ZbhrQwO6Yj8%2B4ZNgTR2pYUz2mHANWM2XjvT20pk1U%2BJ4opVp4NUWR%2BgsPa%2F%2FBaR6k9OpPGej48e35h2Hw%3D%3D"}]}
cf-ray: 9bfd3a671d7df313-BLR
alt-svc: h3=":443"; ma=86400
HTTP/1.1 302 Found
Date: Sun, 18 Jan 2026 09:57:27 GMT
Content-Type: text/html; charset=iso-8859-1
Transfer-Encoding: chunked
Connection: keep-alive
server: cloudflare
location: https://www.biorxiv.org/lookup/doi/10.1101/385849
cf-cache-status: DYNAMIC
Nel: {"report_to":"cf-nel","success_fraction":0.0,"max_age":604800}
Report-To: {"group":"cf-nel","max_age":604800,"endpoints":[{"url":"https://a.nel.cloudflare.com/report/v4?s=iimxIWRlP%2Fd7IR99lxltX0jr7324rqHeCWVYWQ1JRoDyxaNMU5%2FAxcKz8tjLFkGLm8j68NsjOSi8XokChJ3TOJ4eGcaY7oxVZmrN"}]}
CF-RAY: 9bfd3a68cdc549a6-BOM
alt-svc: h3=":443"; ma=86400
HTTP/2 301
date: Sun, 18 Jan 2026 09:57:27 GMT
content-type: text/html; charset=UTF-8
location: https://www.biorxiv.org/content/10.1101/385849v1
cf-ray: 9bfd3a6bdfbed3d4-BLR
x-content-type-options: nosniff
x-content-type-options: nosniff
x-drupal-cache: MISS
expires: Sun, 18 Jan 2026 10:27:27 GMT
cache-control: public, max-age=1800
x-varnish-cache:
pragma: no-cache
vary: Accept-Encoding
x-highwire-sitecode: biorxiv
x-highwire-smart-code: biorxiv_production
x-varnish: 1892473754
x-varnish-ttl:
via: 1.1 varnish
cf-cache-status: MISS
set-cookie: __cf_bm=jj900npeu8P9g.dIh9zVwuTgdgHMu07hO8NNQsy3bzo-1768730247-1.0.1.1-Id0OcVcUJzartkHMpViY.3P4ffpEWm5US.7EnzB3grAEfDB8OQ6PpF1rkPaJ35ouUSHl8RmPcCQYG_tWZHlXMAjBOQO8mtRMm8nq64xrGeo; path=/; expires=Sun, 18-Jan-26 10:27:27 GMT; domain=.www.biorxiv.org; HttpOnly; Secure; SameSite=None
server: cloudflare
HTTP/2 200
date: Sun, 18 Jan 2026 09:57:29 GMT
content-type: text/html; charset=utf-8
content-encoding: gzip
x-content-type-options: nosniff
x-content-type-options: nosniff
x-drupal-cache: MISS
expires: Sun, 19 Nov 1978 05:00:00 GMT
cache-control: no-cache, must-revalidate
set-cookie: SSESS1dd6867f1a1b90340f573dcdef3076bc=MJUyq_9fvbloD4qIBQD2En-2tUbni3MyhPj4wR-Yz80; expires=Tue, 10-Feb-2026 13:30:48 GMT; path=/; domain=.biorxiv.org; secure; HttpOnly
content-language: en
x-frame-options: SAMEORIGIN
x-generator: Drupal 7 (https://drupal.org)
link:
; rel="canonical",; rel="shortlink"
vary: Accept-Encoding
x-highwire-sitecode: biorxiv
x-highwire-smart-code: biorxiv_production
x-varnish: 694602134
age: 0
via: 1.1 varnish
x-varnish-ttl:
x-varnish-cache:
cf-cache-status: DYNAMIC
server: cloudflare
cf-ray: 9bfd3a6f9b0bd3d4-BLR
DeepSignal: detecting DNA methylation state from Nanopore sequencing reads using deep-learning | bioRxiv
New Results
DeepSignal: detecting DNA methylation state from Nanopore sequencing reads using deep-learning
Peng Ni, Neng Huang, Feng Luo, Jianxin Wang
doi: https://doi.org/10.1101/385849

Abstract
The Oxford Nanopore sequencing enables to directly detect methylation sites in DNA from reads without extra laboratory techniques. In this study, we develop DeepSignal, a deep learning method to detect DNA methylated sites from Nanopore sequencing reads. DeepSignal construct features from both raw electrical signals and signal sequences in Nanopore reads. Testing on Nanopore reads of pUC19, E. coli and human, we show that DeepSignal can achieve both higher read level and genome level accuracy on detecting 6mA and 5mC methylation comparing to previous HMM based methods. Moreover, DeepSignal achieves similar performance cross different methylation bases and different methylation motifs. Furthermore, DeepSignal can detect 5mC and 6mA methylation states of genome sites with above 90% genome level accuracy under just 5X coverage using controlled methylation data.
Copyright
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.