HTTP/2 301
date: Sun, 18 Jan 2026 09:54:19 GMT
content-length: 0
location: https://doi.org/10.1101/159756
server: cloudflare
vary: Origin
expires: Mon, 19 Jan 2026 09:54:19 GMT
permissions-policy: interest-cohort=(),browsing-topics=()
cf-cache-status: DYNAMIC
nel: {"report_to":"cf-nel","success_fraction":0.0,"max_age":604800}
strict-transport-security: max-age=31536000; includeSubDomains; preload
report-to: {"group":"cf-nel","max_age":604800,"endpoints":[{"url":"https://a.nel.cloudflare.com/report/v4?s=aqEUXrNnjWmsfBpB7ywQzQiw4U%2F8n4WwEca8DaPcnthgxyq96Pym7oJFqdt9nU6uVYWZKWIi0TEvKJsH2eARezo083wZAQ%3D%3D"}]}
cf-ray: 9bfd35d9d964755c-BLR
alt-svc: h3=":443"; ma=86400
HTTP/2 302
date: Sun, 18 Jan 2026 09:54:20 GMT
content-type: text/html;charset=utf-8
location: https://biorxiv.org/lookup/doi/10.1101/159756
server: cloudflare
vary: Origin
vary: Accept
expires: Sun, 18 Jan 2026 10:10:59 GMT
permissions-policy: interest-cohort=(),browsing-topics=()
cf-cache-status: DYNAMIC
nel: {"report_to":"cf-nel","success_fraction":0.0,"max_age":604800}
strict-transport-security: max-age=31536000; includeSubDomains; preload
report-to: {"group":"cf-nel","max_age":604800,"endpoints":[{"url":"https://a.nel.cloudflare.com/report/v4?s=jnx4JkTm65LY7sxVJvOyaf7u%2F1%2Bv2PawIj%2BGYgDAeyAEQY7c52Ay%2FpPxId7eOZqeeGrbl%2F6F%2B8l0RgyyFaGWOPaYxStz8g%3D%3D"}]}
cf-ray: 9bfd35da29b3755c-BLR
alt-svc: h3=":443"; ma=86400
HTTP/1.1 302 Found
Date: Sun, 18 Jan 2026 09:54:20 GMT
Content-Type: text/html; charset=iso-8859-1
Transfer-Encoding: chunked
Connection: keep-alive
server: cloudflare
location: https://www.biorxiv.org/lookup/doi/10.1101/159756
cf-cache-status: DYNAMIC
Nel: {"report_to":"cf-nel","success_fraction":0.0,"max_age":604800}
Report-To: {"group":"cf-nel","max_age":604800,"endpoints":[{"url":"https://a.nel.cloudflare.com/report/v4?s=Hh%2F2kRySjWQVg%2B8BZBYrxSBflOMYTu2Bc%2Fhq%2FatTLuiGSJKVTxyqF%2F9U2SYumXHHOChkFYdbkLAauaIOk%2FLl9loXFGwZXMzN71KQ"}]}
CF-RAY: 9bfd35dc08acdb32-BOM
alt-svc: h3=":443"; ma=86400
HTTP/2 301
date: Sun, 18 Jan 2026 09:54:21 GMT
content-type: text/html; charset=UTF-8
location: https://www.biorxiv.org/content/10.1101/159756v5
cf-ray: 9bfd35df48aa9ac4-BLR
x-content-type-options: nosniff
x-content-type-options: nosniff
x-drupal-cache: MISS
expires: Sun, 18 Jan 2026 10:24:21 GMT
cache-control: public, max-age=1800
pragma: no-cache
vary: Accept-Encoding
x-highwire-sitecode: biorxiv
x-highwire-smart-code: biorxiv_production
x-varnish: 1892458991
via: 1.1 varnish
x-varnish-ttl:
x-varnish-cache:
cf-cache-status: MISS
set-cookie: __cf_bm=c9SUY4CcB.2Tkj1x78ZaKq.qxuLfGgVuFC7yBxgx76w-1768730061-1.0.1.1-Fu1ejWu0na5Fiy3BMYj5WaPw7mxzOFCShGg_cDpeAjlg1H3T79gvb2j2eenLLk3_ttVl6RYe2yoqqn.9mIlVNth8psJ3wGXnpChpSwvgsnY; path=/; expires=Sun, 18-Jan-26 10:24:21 GMT; domain=.www.biorxiv.org; HttpOnly; Secure; SameSite=None
server: cloudflare
HTTP/2 200
date: Sun, 18 Jan 2026 09:54:23 GMT
content-type: text/html; charset=utf-8
content-encoding: gzip
x-content-type-options: nosniff
x-content-type-options: nosniff
x-drupal-cache: MISS
expires: Sun, 19 Nov 1978 05:00:00 GMT
cache-control: no-cache, must-revalidate
set-cookie: SSESS1dd6867f1a1b90340f573dcdef3076bc=-X_TlwxRdlciNvUUjHD7uTwUQJ6neEOdWap9jUFxERs; expires=Tue, 10-Feb-2026 13:27:42 GMT; path=/; domain=.biorxiv.org; secure; HttpOnly
content-language: en
x-frame-options: SAMEORIGIN
x-generator: Drupal 7 (https://drupal.org)
link:
; rel="canonical",; rel="shortlink"
vary: Accept-Encoding
x-highwire-sitecode: biorxiv
x-highwire-smart-code: biorxiv_production
x-varnish: 1892459041
age: 0
via: 1.1 varnish
x-varnish-ttl:
x-varnish-cache:
cf-cache-status: DYNAMIC
server: cloudflare
cf-ray: 9bfd35e568439ac4-BLR
Privacy-preserving generative deep neural networks support clinical data sharing | bioRxiv
New Results
Privacy-preserving generative deep neural networks support clinical data sharing
doi: https://doi.org/10.1101/159756

Abstract
Background Data sharing accelerates scientific progress but sharing individual level data while preserving patient privacy presents a barrier.
Methods and Results Using pairs of deep neural networks, we generated simulated, synthetic “participants” that closely resemble participants of the SPRINT trial. We showed that such paired networks can be trained with differential privacy, a formal privacy framework that limits the likelihood that queries of the synthetic participants’ data could identify a real a participant in the trial. Machine-learning predictors built on the synthetic population generalize to the original dataset. This finding suggests that the synthetic data can be shared with others, enabling them to perform hypothesis-generating analyses as though they had the original trial data.
Conclusions Deep neural networks that generate synthetic participants facilitate secondary analyses and reproducible investigation of clinical datasets by enhancing data sharing while preserving participant privacy.
Copyright
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license.