HTTP/2 301
date: Mon, 19 Jan 2026 04:24:17 GMT
content-length: 0
location: https://doi.org/10.1101/178624
server: cloudflare
vary: Origin
expires: Tue, 20 Jan 2026 04:24:17 GMT
permissions-policy: interest-cohort=(),browsing-topics=()
cf-cache-status: DYNAMIC
nel: {"report_to":"cf-nel","success_fraction":0.0,"max_age":604800}
strict-transport-security: max-age=31536000; includeSubDomains; preload
report-to: {"group":"cf-nel","max_age":604800,"endpoints":[{"url":"https://a.nel.cloudflare.com/report/v4?s=LXVKFQie6TB3G87hBAE3%2BSwY%2FGn0ezvSgcMZH2ITYPVs23BB5y9sWWMvQJ%2F%2BF6EOZ%2Bf9AwltkNH6MoxByBSI0nEo%2FvFsgQ%3D%3D"}]}
cf-ray: 9c038fc2da548087-BLR
alt-svc: h3=":443"; ma=86400
HTTP/2 302
date: Mon, 19 Jan 2026 04:24:17 GMT
content-type: text/html;charset=utf-8
location: https://biorxiv.org/lookup/doi/10.1101/178624
server: cloudflare
vary: Origin
vary: Accept
expires: Mon, 19 Jan 2026 05:11:01 GMT
permissions-policy: interest-cohort=(),browsing-topics=()
cf-cache-status: DYNAMIC
nel: {"report_to":"cf-nel","success_fraction":0.0,"max_age":604800}
strict-transport-security: max-age=31536000; includeSubDomains; preload
report-to: {"group":"cf-nel","max_age":604800,"endpoints":[{"url":"https://a.nel.cloudflare.com/report/v4?s=Oe4Tw6pGj%2FVPDAJqV%2BtLCvQgeBbPVsUVcSRCpNeImAxTzbD42FqLsftbO9rkzaMKJi7JsJXXhRkZnD7SqCIdeRuKG32WmA%3D%3D"}]}
cf-ray: 9c038fc46c538087-BLR
alt-svc: h3=":443"; ma=86400
HTTP/1.1 302 Found
Date: Mon, 19 Jan 2026 04:24:17 GMT
Content-Type: text/html; charset=iso-8859-1
Transfer-Encoding: chunked
Connection: keep-alive
server: cloudflare
location: https://www.biorxiv.org/lookup/doi/10.1101/178624
cf-cache-status: DYNAMIC
Nel: {"report_to":"cf-nel","success_fraction":0.0,"max_age":604800}
Report-To: {"group":"cf-nel","max_age":604800,"endpoints":[{"url":"https://a.nel.cloudflare.com/report/v4?s=dhTIYLUo0kJuwiGEU8UWNCzigLqMafbaT52fCay1VVmhfuPrzfV27g7nXPDwwqiKZp1%2FhTfnw67WZEyoLctOZ3EasBxwAwDscQ%3D%3D"}]}
CF-RAY: 9c038fc4eb3b5857-BOM
alt-svc: h3=":443"; ma=86400
HTTP/2 301
date: Mon, 19 Jan 2026 04:24:18 GMT
content-type: text/html; charset=UTF-8
location: https://www.biorxiv.org/content/10.1101/178624v1
cf-ray: 9c038fc83c06c462-BLR
x-content-type-options: nosniff
x-content-type-options: nosniff
x-drupal-cache: MISS
expires: Mon, 19 Jan 2026 04:54:18 GMT
cache-control: public, max-age=1800
x-varnish-ttl:
pragma: no-cache
vary: Accept-Encoding
x-highwire-sitecode: biorxiv
x-highwire-smart-code: biorxiv_production
x-varnish: 1897586959
x-varnish-cache:
via: 1.1 varnish
cf-cache-status: MISS
set-cookie: __cf_bm=M3A89hOzyafhgbFWWvPK4uqky3vYsOKrxQQW9UdsNrU-1768796658-1.0.1.1-uPi2J6TeT2Eah6TVZYkotoufkF0zDreawNGiTuR4z1sXtB9NUDADDdad1qPh_h0yaPspRuDbIxAVzlU9ujo655vNRMTaIi7tfD2NE7s817I; path=/; expires=Mon, 19-Jan-26 04:54:18 GMT; domain=.www.biorxiv.org; HttpOnly; Secure; SameSite=None
server: cloudflare
HTTP/2 200
date: Mon, 19 Jan 2026 04:24:20 GMT
content-type: text/html; charset=utf-8
content-encoding: gzip
x-content-type-options: nosniff
x-content-type-options: nosniff
x-drupal-cache: MISS
expires: Sun, 19 Nov 1978 05:00:00 GMT
cache-control: no-cache, must-revalidate
set-cookie: SSESS1dd6867f1a1b90340f573dcdef3076bc=MUe2dnvw8OsEErU9daRgFyVR-370z1KVwxQQ1ZBOyy8; expires=Wed, 11-Feb-2026 07:57:39 GMT; path=/; domain=.biorxiv.org; secure; HttpOnly
content-language: en
x-frame-options: SAMEORIGIN
x-generator: Drupal 7 (https://drupal.org)
link:
; rel="canonical",; rel="shortlink"
vary: Accept-Encoding
x-highwire-sitecode: biorxiv
x-highwire-smart-code: biorxiv_production
x-varnish: 699711049
age: 0
via: 1.1 varnish
x-varnish-ttl:
x-varnish-cache:
cf-cache-status: DYNAMIC
server: cloudflare
cf-ray: 9c038fcc1d61c462-BLR
Interpretable dimensionality reduction of single cell transcriptome data with deep generative models | bioRxiv
New Results
Interpretable dimensionality reduction of single cell transcriptome data with deep generative models
Jiarui Ding, Anne Condon, Sohrab P. Shah
doi: https://doi.org/10.1101/178624

Abstract
Single-cell RNA-sequencing has great potential to discover cell types, identify cell states, trace development lineages, and reconstruct the spatial organization of cells. However, dimension reduction to interpret structure in single-cell sequencing data remains a challenge. Existing algorithms are either not able to uncover the clustering structures in the data, or lose global information such as groups of clusters that are close to each other. We present a robust statistical model, scvis, to capture and visualize the low-dimensional structures in single-cell gene expression data. Simulation results demonstrate that low-dimensional representations learned by scvis preserve both the local and global neighbour structures in the data. In addition, scvis is robust to the number of data points and learns a probabilistic parametric mapping function to add new data points to an existing embedding. We then use scvis to analyze four single-cell RNA-sequencing datasets, exemplifying interpretable two-dimensional representations of the high-dimensional single-cell RNA-sequencing data.
Copyright
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license.