HTTP/2 301
date: Sun, 18 Jan 2026 09:50:30 GMT
content-length: 0
location: https://doi.org/10.1101/227645
server: cloudflare
vary: Origin
expires: Mon, 19 Jan 2026 09:50:30 GMT
permissions-policy: interest-cohort=(),browsing-topics=()
cf-cache-status: DYNAMIC
nel: {"report_to":"cf-nel","success_fraction":0.0,"max_age":604800}
strict-transport-security: max-age=31536000; includeSubDomains; preload
report-to: {"group":"cf-nel","max_age":604800,"endpoints":[{"url":"https://a.nel.cloudflare.com/report/v4?s=AHcOpjIxoBPm81JoBK5tyMxXKGh11V%2FYg97DwWonGFqR0k%2B0rb7Akwhw9clij2EaL%2FzJfIRU7MCnFqvQVmxt14dnznN2CQ%3D%3D"}]}
cf-ray: 9bfd303e8db7c469-BLR
alt-svc: h3=":443"; ma=86400
HTTP/2 302
date: Sun, 18 Jan 2026 09:50:30 GMT
content-type: text/html;charset=utf-8
location: https://biorxiv.org/lookup/doi/10.1101/227645
server: cloudflare
vary: Origin
vary: Accept
expires: Sun, 18 Jan 2026 10:10:59 GMT
permissions-policy: interest-cohort=(),browsing-topics=()
cf-cache-status: DYNAMIC
nel: {"report_to":"cf-nel","success_fraction":0.0,"max_age":604800}
strict-transport-security: max-age=31536000; includeSubDomains; preload
report-to: {"group":"cf-nel","max_age":604800,"endpoints":[{"url":"https://a.nel.cloudflare.com/report/v4?s=iogEFDqN9maLLYOmJmIyx53BghctJQrYXDPPy1yQF97f20SOopxmQSiHHusSgpEjfD9KEpDD17Hr964wFvcOOf42Ms0gKw%3D%3D"}]}
cf-ray: 9bfd303eddd4c469-BLR
alt-svc: h3=":443"; ma=86400
HTTP/1.1 302 Found
Date: Sun, 18 Jan 2026 09:50:30 GMT
Content-Type: text/html; charset=iso-8859-1
Transfer-Encoding: chunked
Connection: keep-alive
server: cloudflare
location: https://www.biorxiv.org/lookup/doi/10.1101/227645
cf-cache-status: DYNAMIC
Nel: {"report_to":"cf-nel","success_fraction":0.0,"max_age":604800}
Report-To: {"group":"cf-nel","max_age":604800,"endpoints":[{"url":"https://a.nel.cloudflare.com/report/v4?s=KDDf%2Fr2jqAU9OvWu1qyqZI%2Ftx7KTi8eZQ%2FPx0TvfU14hmpahOrKEkiHifbZDvqqXAtyTWaPMPxaLm1AibiO9fsAOkMwf%2FOxw1GR0"}]}
CF-RAY: 9bfd30407af195ae-BOM
alt-svc: h3=":443"; ma=86400
HTTP/2 301
date: Sun, 18 Jan 2026 09:50:32 GMT
content-type: text/html; charset=UTF-8
location: https://www.biorxiv.org/content/10.1101/227645v1
cf-ray: 9bfd3043cadd741b-BLR
x-content-type-options: nosniff
x-content-type-options: nosniff
x-drupal-cache: MISS
expires: Sun, 18 Jan 2026 10:20:32 GMT
cache-control: public, max-age=1800
pragma: no-cache
vary: Accept-Encoding
x-highwire-sitecode: biorxiv
x-highwire-smart-code: biorxiv_production
x-varnish: 694569398
via: 1.1 varnish
x-varnish-ttl:
x-varnish-cache:
cf-cache-status: MISS
set-cookie: __cf_bm=SnSpZ3fAPin5f0NRj3yYM5h0WB9URh73.g7hMmE0Wro-1768729832-1.0.1.1-vBm73vO68rtyH0Mc5ONaDHiYr1QdCqHhRWfPEVV30HYuRVsQNyCM.meKjWLXdnXULmrhBEFQEiyForiC60CzQCD90NjgkKxDlH4rIgr80C8; path=/; expires=Sun, 18-Jan-26 10:20:32 GMT; domain=.www.biorxiv.org; HttpOnly; Secure; SameSite=None
server: cloudflare
HTTP/2 200
date: Sun, 18 Jan 2026 09:50:33 GMT
content-type: text/html; charset=utf-8
content-encoding: gzip
x-content-type-options: nosniff
x-content-type-options: nosniff
x-drupal-cache: MISS
expires: Sun, 19 Nov 1978 05:00:00 GMT
cache-control: no-cache, must-revalidate
set-cookie: SSESS1dd6867f1a1b90340f573dcdef3076bc=I8PC0xXw0uO99NcSVYo7-QvSAf5IV0jC25rB3gwYmNQ; expires=Tue, 10-Feb-2026 13:23:52 GMT; path=/; domain=.biorxiv.org; secure; HttpOnly
content-language: en
x-frame-options: SAMEORIGIN
x-generator: Drupal 7 (https://drupal.org)
link:
; rel="canonical",; rel="shortlink"
vary: Accept-Encoding
x-highwire-sitecode: biorxiv
x-highwire-smart-code: biorxiv_production
x-varnish: 694569445
age: 0
via: 1.1 varnish
x-varnish-ttl:
x-varnish-cache:
cf-cache-status: DYNAMIC
server: cloudflare
cf-ray: 9bfd304b9b25741b-BLR
CytoGAN: Generative Modeling of Cell Images | bioRxiv
New Results
CytoGAN: Generative Modeling of Cell Images
Peter Goldsborough, Nick Pawlowski, Juan C Caicedo, Shantanu Singh, Anne E Carpenter
doi: https://doi.org/10.1101/227645
Abstract
We explore the application of Generative Adversarial Networks to the domain of morphological profiling of human cultured cells imaged by fluorescence microscopy. When evaluated for their ability to group cell images responding to treatment by chemicals of known classes, we find that adversarially learned representations are superior to autoencoder-based approaches. While currently inferior to classical computer vision and transfer learning, the adversarial framework enables useful visualization of the variation of cellular images due to their generative capabilities.
Copyright
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.