| CARVIEW |
Select Language
HTTP/2 301
date: Mon, 19 Jan 2026 00:10:51 GMT
content-length: 0
location: https://doi.org/10.18653/V1/W17-2328
server: cloudflare
vary: Origin
expires: Tue, 20 Jan 2026 00:10:51 GMT
permissions-policy: interest-cohort=(),browsing-topics=()
cf-cache-status: DYNAMIC
nel: {"report_to":"cf-nel","success_fraction":0.0,"max_age":604800}
strict-transport-security: max-age=31536000; includeSubDomains; preload
report-to: {"group":"cf-nel","max_age":604800,"endpoints":[{"url":"https://a.nel.cloudflare.com/report/v4?s=Ms3H5s15p6YJY%2BFPYq%2B5ZmmAeMm9NwUGEXOnQM9E6scvDbnBzBhbYUV4CrlbnWpYFql9cYTjmsSOKRGVyZeIP5DwEsgnPg%3D%3D"}]}
cf-ray: 9c021c887eb8d3d4-BLR
alt-svc: h3=":443"; ma=86400
HTTP/2 302
date: Mon, 19 Jan 2026 00:10:51 GMT
content-type: text/html;charset=utf-8
location: https://aclweb.org/anthology/W17-2328
server: cloudflare
vary: Origin
vary: Accept
expires: Mon, 19 Jan 2026 01:07:49 GMT
permissions-policy: interest-cohort=(),browsing-topics=()
cf-cache-status: DYNAMIC
nel: {"report_to":"cf-nel","success_fraction":0.0,"max_age":604800}
strict-transport-security: max-age=31536000; includeSubDomains; preload
report-to: {"group":"cf-nel","max_age":604800,"endpoints":[{"url":"https://a.nel.cloudflare.com/report/v4?s=hFuqlxVeAF47Lv2SajeiudEzktjIFUnFRcgR%2FacJe6oh7NL9x5y0B0eHk6UrwFYbHYF7iSOlaNbPBLtva32FwRkaoUSUEw%3D%3D"}]}
cf-ray: 9c021c88ceced3d4-BLR
alt-svc: h3=":443"; ma=86400
HTTP/1.1 301 Moved Permanently
Date: Mon, 19 Jan 2026 00:10:52 GMT
Server: Apache
Location: https://aclweb.org/anthology/W17-2328
Content-Length: 245
Content-Type: text/html; charset=iso-8859-1
HTTP/2 301
date: Mon, 19 Jan 2026 00:10:53 GMT
server: nginx/1.25.5
content-type: text/html; charset=iso-8859-1
content-length: 241
location: https://aclanthology.org/W17-2328
x-server-cache: true
x-proxy-cache: MISS
host-header: c2hhcmVkLmJsdWVob3N0LmNvbQ==
HTTP/1.1 301 Moved Permanently
Date: Mon, 19 Jan 2026 00:10:53 GMT
Server: Apache/2.4.41 (Ubuntu)
Location: https://aclanthology.org/W17-2328/
Content-Length: 325
Content-Type: text/html; charset=iso-8859-1
HTTP/1.1 200 OK
Date: Mon, 19 Jan 2026 00:10:53 GMT
Server: Apache/2.4.41 (Ubuntu)
Last-Modified: Sun, 18 Jan 2026 11:49:45 GMT
ETag: "85aa-648a82bbfdb7f-gzip"
Accept-Ranges: bytes
Vary: Accept-Encoding
Content-Encoding: gzip
Content-Length: 8451
Content-Type: text/html; charset=utf-8
Deep Learning for Biomedical Information Retrieval: Learning Textual Relevance from Click Logs - ACL Anthology
Correct Metadata for
Abstract
We describe a Deep Learning approach to modeling the relevance of a document’s text to a query, applied to biomedical literature. Instead of mapping each document and query to a common semantic space, we compute a variable-length difference vector between the query and document which is then passed through a deep convolution stage followed by a deep regression network to produce the estimated probability of the document’s relevance to the query. Despite the small amount of training data, this approach produces a more robust predictor than computing similarities between semantic vector representations of the query and document, and also results in significant improvements over traditional IR text factors. In the future, we plan to explore its application in improving PubMed search.- Anthology ID:
- W17-2328
- Volume:
- Proceedings of the 16th BioNLP Workshop
- Month:
- August
- Year:
- 2017
- Address:
- Vancouver, Canada,
- Editors:
- Kevin Bretonnel Cohen, Dina Demner-Fushman, Sophia Ananiadou, Junichi Tsujii
- Venue:
- BioNLP
- SIG:
- SIGBIOMED
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 222–231
- Language:
- URL:
- https://aclanthology.org/W17-2328/
- DOI:
- 10.18653/v1/W17-2328
- Bibkey:
- Cite (ACL):
- Sunil Mohan, Nicolas Fiorini, Sun Kim, and Zhiyong Lu. 2017. Deep Learning for Biomedical Information Retrieval: Learning Textual Relevance from Click Logs. In Proceedings of the 16th BioNLP Workshop, pages 222–231, Vancouver, Canada,. Association for Computational Linguistics.
- Cite (Informal):
- Deep Learning for Biomedical Information Retrieval: Learning Textual Relevance from Click Logs (Mohan et al., BioNLP 2017)
- Copy Citation:
- PDF:
- https://aclanthology.org/W17-2328.pdf
Export citation
@inproceedings{mohan-etal-2017-deep,
title = "Deep Learning for Biomedical Information Retrieval: Learning Textual Relevance from Click Logs",
author = "Mohan, Sunil and
Fiorini, Nicolas and
Kim, Sun and
Lu, Zhiyong",
editor = "Cohen, Kevin Bretonnel and
Demner-Fushman, Dina and
Ananiadou, Sophia and
Tsujii, Junichi",
booktitle = "Proceedings of the 16th {B}io{NLP} Workshop",
month = aug,
year = "2017",
address = "Vancouver, Canada,",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-2328/",
doi = "10.18653/v1/W17-2328",
pages = "222--231",
abstract = "We describe a Deep Learning approach to modeling the relevance of a document{'}s text to a query, applied to biomedical literature. Instead of mapping each document and query to a common semantic space, we compute a variable-length difference vector between the query and document which is then passed through a deep convolution stage followed by a deep regression network to produce the estimated probability of the document{'}s relevance to the query. Despite the small amount of training data, this approach produces a more robust predictor than computing similarities between semantic vector representations of the query and document, and also results in significant improvements over traditional IR text factors. In the future, we plan to explore its application in improving PubMed search."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="https://www.loc.gov/mods/v3">
<mods ID="mohan-etal-2017-deep">
<titleInfo>
<title>Deep Learning for Biomedical Information Retrieval: Learning Textual Relevance from Click Logs</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sunil</namePart>
<namePart type="family">Mohan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nicolas</namePart>
<namePart type="family">Fiorini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sun</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhiyong</namePart>
<namePart type="family">Lu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 16th BioNLP Workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="given">Bretonnel</namePart>
<namePart type="family">Cohen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dina</namePart>
<namePart type="family">Demner-Fushman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sophia</namePart>
<namePart type="family">Ananiadou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada,</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We describe a Deep Learning approach to modeling the relevance of a document’s text to a query, applied to biomedical literature. Instead of mapping each document and query to a common semantic space, we compute a variable-length difference vector between the query and document which is then passed through a deep convolution stage followed by a deep regression network to produce the estimated probability of the document’s relevance to the query. Despite the small amount of training data, this approach produces a more robust predictor than computing similarities between semantic vector representations of the query and document, and also results in significant improvements over traditional IR text factors. In the future, we plan to explore its application in improving PubMed search.</abstract>
<identifier type="citekey">mohan-etal-2017-deep</identifier>
<identifier type="doi">10.18653/v1/W17-2328</identifier>
<location>
<url>https://aclanthology.org/W17-2328/</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>222</start>
<end>231</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings %T Deep Learning for Biomedical Information Retrieval: Learning Textual Relevance from Click Logs %A Mohan, Sunil %A Fiorini, Nicolas %A Kim, Sun %A Lu, Zhiyong %Y Cohen, Kevin Bretonnel %Y Demner-Fushman, Dina %Y Ananiadou, Sophia %Y Tsujii, Junichi %S Proceedings of the 16th BioNLP Workshop %D 2017 %8 August %I Association for Computational Linguistics %C Vancouver, Canada, %F mohan-etal-2017-deep %X We describe a Deep Learning approach to modeling the relevance of a document’s text to a query, applied to biomedical literature. Instead of mapping each document and query to a common semantic space, we compute a variable-length difference vector between the query and document which is then passed through a deep convolution stage followed by a deep regression network to produce the estimated probability of the document’s relevance to the query. Despite the small amount of training data, this approach produces a more robust predictor than computing similarities between semantic vector representations of the query and document, and also results in significant improvements over traditional IR text factors. In the future, we plan to explore its application in improving PubMed search. %R 10.18653/v1/W17-2328 %U https://aclanthology.org/W17-2328/ %U https://doi.org/10.18653/v1/W17-2328 %P 222-231
Markdown (Informal)
[Deep Learning for Biomedical Information Retrieval: Learning Textual Relevance from Click Logs](https://aclanthology.org/W17-2328/) (Mohan et al., BioNLP 2017)
- Deep Learning for Biomedical Information Retrieval: Learning Textual Relevance from Click Logs (Mohan et al., BioNLP 2017)
ACL
- Sunil Mohan, Nicolas Fiorini, Sun Kim, and Zhiyong Lu. 2017. Deep Learning for Biomedical Information Retrieval: Learning Textual Relevance from Click Logs. In Proceedings of the 16th BioNLP Workshop, pages 222–231, Vancouver, Canada,. Association for Computational Linguistics.