HTTP/2 301
date: Mon, 19 Jan 2026 02:55:45 GMT
content-length: 0
location: https://doi.org/10.1101/104869
server: cloudflare
vary: Origin
expires: Tue, 20 Jan 2026 02:55:45 GMT
permissions-policy: interest-cohort=(),browsing-topics=()
cf-cache-status: DYNAMIC
nel: {"report_to":"cf-nel","success_fraction":0.0,"max_age":604800}
strict-transport-security: max-age=31536000; includeSubDomains; preload
report-to: {"group":"cf-nel","max_age":604800,"endpoints":[{"url":"https://a.nel.cloudflare.com/report/v4?s=14mgiy%2F1K5Thzv%2Fb1A0LlVYsLnJqsZv8EDxSZ%2FF81Dj%2BfKOEDJtr3mDimq9TNWpczWdWJ70eyOd7gFEffOdqCQUzEmVmKg%3D%3D"}]}
cf-ray: 9c030e14cc2020c5-BLR
alt-svc: h3=":443"; ma=86400
HTTP/2 302
date: Mon, 19 Jan 2026 02:55:45 GMT
content-type: text/html;charset=utf-8
location: https://biorxiv.org/lookup/doi/10.1101/104869
server: cloudflare
vary: Origin
vary: Accept
expires: Mon, 19 Jan 2026 03:07:49 GMT
permissions-policy: interest-cohort=(),browsing-topics=()
cf-cache-status: DYNAMIC
nel: {"report_to":"cf-nel","success_fraction":0.0,"max_age":604800}
strict-transport-security: max-age=31536000; includeSubDomains; preload
report-to: {"group":"cf-nel","max_age":604800,"endpoints":[{"url":"https://a.nel.cloudflare.com/report/v4?s=crKEdj6rO%2B2jkKh2zH7%2F8MCHb7IGfHzlpJxPh4lAupfGaNzpm2pFnKtoAiw2xqk6eLOfLZFE%2FPAABFT%2Fw9QYCNzaA%2FIYGQ%3D%3D"}]}
cf-ray: 9c030e151c6420c5-BLR
alt-svc: h3=":443"; ma=86400
HTTP/1.1 302 Found
Date: Mon, 19 Jan 2026 02:55:46 GMT
Content-Type: text/html; charset=iso-8859-1
Transfer-Encoding: chunked
Connection: keep-alive
server: cloudflare
location: https://www.biorxiv.org/lookup/doi/10.1101/104869
cf-cache-status: DYNAMIC
Nel: {"report_to":"cf-nel","success_fraction":0.0,"max_age":604800}
Report-To: {"group":"cf-nel","max_age":604800,"endpoints":[{"url":"https://a.nel.cloudflare.com/report/v4?s=LmODi%2BZmMF0uOLZ1CyyeyPJD9JmXk1k2qqpV6kX2kJBcRUGSrj%2FVN3XkUBz6ZyLEJ84qzE%2FIKmzsjcBy0Cj9CReLS6YtNhKdUcyk"}]}
CF-RAY: 9c030e15af63bc9a-BOM
alt-svc: h3=":443"; ma=86400
HTTP/2 301
date: Mon, 19 Jan 2026 02:55:46 GMT
content-type: text/html; charset=UTF-8
location: https://www.biorxiv.org/content/10.1101/104869v1
cf-ray: 9c030e18e9d0c1c2-BLR
x-content-type-options: nosniff
x-content-type-options: nosniff
x-drupal-cache: MISS
expires: Mon, 19 Jan 2026 03:25:46 GMT
cache-control: public, max-age=1800
x-varnish-cache:
pragma: no-cache
vary: Accept-Encoding
x-highwire-sitecode: biorxiv
x-highwire-smart-code: biorxiv_production
x-varnish: 699221056
x-varnish-ttl:
via: 1.1 varnish
cf-cache-status: EXPIRED
set-cookie: __cf_bm=4QgOrzdBl08BMSKgakEiaVB9U.Gp3jz086t1yoKWBo8-1768791346-1.0.1.1-jKRWitRdfVpVNdw1wivCn.cM3BoPTGFFOfw4tthIZrE_sK_pgQ0oi1W.Wsecg8L7szydXCNSN7Rj25k5YdPf_AphtXbCVN3etvn81dwMu7o; path=/; expires=Mon, 19-Jan-26 03:25:46 GMT; domain=.www.biorxiv.org; HttpOnly; Secure; SameSite=None
server: cloudflare
HTTP/2 200
date: Mon, 19 Jan 2026 02:55:48 GMT
content-type: text/html; charset=utf-8
content-encoding: gzip
x-content-type-options: nosniff
x-content-type-options: nosniff
x-drupal-cache: MISS
expires: Sun, 19 Nov 1978 05:00:00 GMT
cache-control: no-cache, must-revalidate
set-cookie: SSESS1dd6867f1a1b90340f573dcdef3076bc=lSnD1Nq3xFqpgZ8nJXMm1okiBINZGqZCFdKU_WIzjm4; expires=Wed, 11-Feb-2026 06:29:07 GMT; path=/; domain=.biorxiv.org; secure; HttpOnly
content-language: en
x-frame-options: SAMEORIGIN
x-generator: Drupal 7 (https://drupal.org)
link:
; rel="canonical",; rel="shortlink"
vary: Accept-Encoding
x-highwire-sitecode: biorxiv
x-highwire-smart-code: biorxiv_production
x-varnish: 1897097764
age: 0
via: 1.1 varnish
x-varnish-ttl:
x-varnish-cache:
cf-cache-status: DYNAMIC
server: cloudflare
cf-ray: 9c030e1d2b96c1c2-BLR
Integrative Deep Models for Alternative Splicing | bioRxiv
New Results
Integrative Deep Models for Alternative Splicing
Anupama Jha, Matthew R. Gazzara, Yoseph Barash
doi: https://doi.org/10.1101/104869

Abstract
Advancements in sequencing technologies have highlighted the role of alternative splicing (AS) in increasing transcriptome complexity. This role of AS, combined with the relation of aberrant splicing to malignant states, motivated two streams of research, experimental and computational. The First involves a myriad of techniques such as RNA-Seq and CLIP-Seq to identify splicing regulators and their putative targets. The second involves probabilistic models, also known as splicing codes, which infer regulatory mechanisms and predict splicing outcome directly from genomic sequence. To date, these models have utilized only expression data. In this work we address two related challenges: Can we improve on previous models for AS outcome prediction and can we integrate additional sources of data to improve predictions for AS regulatory factors. We perform a detailed comparison of two previous modeling approaches, Bayesian and Deep Neural networks, dissecting the confounding effects of datasets and target functions. We then develop a new target function for AS prediction and show that it significantly improves model accuracy. Next, we develop a modeling framework to incorporate CLIP-Seq, knockdown and over-expression experiments, which are inherently noisy and suffer from missing values. Using several datasets involving key splice factors in mouse brain, muscle and heart we demonstrate both the prediction improvements and biological insights offered by our new models. Overall, the framework we propose offers a scalable integrative solution to improve splicing code modeling as vast amounts of relevant genomic data become available.
Availability: code and data will be available on Github following publication.
Copyright
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC 4.0 International license.