HTTP/2 301
date: Sun, 18 Jan 2026 10:19:08 GMT
content-length: 0
location: https://doi.org/10.1101/081380
server: cloudflare
vary: Origin
expires: Mon, 19 Jan 2026 10:19:08 GMT
permissions-policy: interest-cohort=(),browsing-topics=()
cf-cache-status: DYNAMIC
nel: {"report_to":"cf-nel","success_fraction":0.0,"max_age":604800}
strict-transport-security: max-age=31536000; includeSubDomains; preload
report-to: {"group":"cf-nel","max_age":604800,"endpoints":[{"url":"https://a.nel.cloudflare.com/report/v4?s=ffPU%2FLmFhpA8NZNLOcxxLzNDTwoh1oD4i4sGZ6nd%2FJqj0u%2FryYlSMveAhfLgev85TRgPbtDNydLBVHpxaEv6ejHClKcdzw%3D%3D"}]}
cf-ray: 9bfd5a315956f424-BLR
alt-svc: h3=":443"; ma=86400
HTTP/2 302
date: Sun, 18 Jan 2026 10:19:08 GMT
content-type: text/html;charset=utf-8
location: https://biorxiv.org/lookup/doi/10.1101/081380
server: cloudflare
vary: Origin
vary: Accept
expires: Sun, 18 Jan 2026 11:11:00 GMT
permissions-policy: interest-cohort=(),browsing-topics=()
cf-cache-status: DYNAMIC
nel: {"report_to":"cf-nel","success_fraction":0.0,"max_age":604800}
strict-transport-security: max-age=31536000; includeSubDomains; preload
report-to: {"group":"cf-nel","max_age":604800,"endpoints":[{"url":"https://a.nel.cloudflare.com/report/v4?s=Jk3HGShJv0PoB3K%2FaIUK3T%2FPQRa%2Fy80OfYCFFoFUABx2LM5TmOqFeO0ekkhwhwW3HY%2BQc4zH7PNuW6NPE7mHQTUUTXXpjw%3D%3D"}]}
cf-ray: 9bfd5a31a9e2f424-BLR
alt-svc: h3=":443"; ma=86400
HTTP/1.1 302 Found
Date: Sun, 18 Jan 2026 10:19:09 GMT
Content-Type: text/html; charset=iso-8859-1
Transfer-Encoding: chunked
Connection: keep-alive
server: cloudflare
location: https://www.biorxiv.org/lookup/doi/10.1101/081380
cf-cache-status: DYNAMIC
Nel: {"report_to":"cf-nel","success_fraction":0.0,"max_age":604800}
Report-To: {"group":"cf-nel","max_age":604800,"endpoints":[{"url":"https://a.nel.cloudflare.com/report/v4?s=5frUxpeQkxIUqGxuj042D2ckKKYf8hXQ6FErVdxieYTBVuJNUNGe%2Ft57IugzF6HFf47%2FFSsQVklohuAHM%2FP%2BR%2BPlGw%2Fo1%2FqWpVzo"}]}
CF-RAY: 9bfd5a338a123e0a-BOM
alt-svc: h3=":443"; ma=86400
HTTP/2 301
date: Sun, 18 Jan 2026 10:19:10 GMT
content-type: text/html; charset=UTF-8
location: https://www.biorxiv.org/content/10.1101/081380v1
cf-ray: 9bfd5a370c069ac4-BLR
x-content-type-options: nosniff
x-content-type-options: nosniff
x-drupal-cache: MISS
expires: Sun, 18 Jan 2026 10:49:10 GMT
cache-control: public, max-age=1800
pragma: no-cache
vary: Accept-Encoding
x-highwire-sitecode: biorxiv
x-highwire-smart-code: biorxiv_production
x-varnish: 1892572413
via: 1.1 varnish
x-varnish-ttl:
x-varnish-cache:
cf-cache-status: MISS
set-cookie: __cf_bm=212UMlWzYUR8552ztq9pjjqtZwPCwrPqiuwdR7HSmF0-1768731550-1.0.1.1-1RYWBwDft7atLZxBoXhR55wM1qGGlBCmZq5tL6SkH22DRITSqDrta4k0UUl3Nbk4r4TtUkp6hx7Hwd_CCkUmtoJoIldiGrh7FbgPx5IEbi4; path=/; expires=Sun, 18-Jan-26 10:49:10 GMT; domain=.www.biorxiv.org; HttpOnly; Secure; SameSite=None
server: cloudflare
HTTP/2 200
date: Sun, 18 Jan 2026 10:19:11 GMT
content-type: text/html; charset=utf-8
content-encoding: gzip
x-content-type-options: nosniff
x-content-type-options: nosniff
x-drupal-cache: MISS
expires: Sun, 19 Nov 1978 05:00:00 GMT
cache-control: no-cache, must-revalidate
set-cookie: SSESS1dd6867f1a1b90340f573dcdef3076bc=FNmOGVvv66pwl6jk6WyLImigtvJIZbPFSFAxAuPcIp0; expires=Tue, 10-Feb-2026 13:52:30 GMT; path=/; domain=.biorxiv.org; secure; HttpOnly
content-language: en
x-frame-options: SAMEORIGIN
x-generator: Drupal 7 (https://drupal.org)
link:
; rel="canonical",; rel="shortlink"
vary: Accept-Encoding
x-highwire-sitecode: biorxiv
x-highwire-smart-code: biorxiv_production
x-varnish: 1892572443
age: 0
via: 1.1 varnish
x-varnish-ttl:
x-varnish-cache:
cf-cache-status: DYNAMIC
server: cloudflare
cf-ray: 9bfd5a3efed49ac4-BLR
FIDDLE: An integrative deep learning framework for functional genomic data inference | bioRxiv
New Results
FIDDLE: An integrative deep learning framework for functional genomic data inference
Umet Eser, L. Stirling Churchman
doi: https://doi.org/10.1101/081380

Abstract
Numerous advances in sequencing technologies have revolutionized genomics through generating many types of genomic functional data. Statistical tools have been developed to analyze individual data types, but there lack strategies to integrate disparate datasets under a unified framework. Moreover, most analysis techniques heavily rely on feature selection and data preprocessing which increase the difficulty of addressing biological questions through the integration of multiple datasets. Here, we introduce FIDDLE (Flexible Integration of Data with Deep LEarning) an open source data-agnostic flexible integrative framework that learns a unified representation from multiple data types to infer another data type. As a case study, we use multiple Saccharomyces cerevisiae genomic datasets to predict global transcription start sites (TSS) through the simulation of TSS-seq data. We demonstrate that a type of data can be inferred from other sources of data types without manually specifying the relevant features and preprocessing. We show that models built from multiple genome-wide datasets perform profoundly better than models built from individual datasets. Thus FIDDLE learns the complex synergistic relationship within individual datasets and, importantly, across datasets.
Copyright
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC 4.0 International license.