HTTP/2 301
date: Sun, 18 Jan 2026 09:59:19 GMT
content-length: 0
location: https://doi.org/10.1101/052118
server: cloudflare
vary: Origin
expires: Mon, 19 Jan 2026 09:59:18 GMT
permissions-policy: interest-cohort=(),browsing-topics=()
cf-cache-status: DYNAMIC
nel: {"report_to":"cf-nel","success_fraction":0.0,"max_age":604800}
strict-transport-security: max-age=31536000; includeSubDomains; preload
report-to: {"group":"cf-nel","max_age":604800,"endpoints":[{"url":"https://a.nel.cloudflare.com/report/v4?s=D46La9uHB4xuJPzhqBTKupe%2FdMJYR3CTtePFccI4UDMaTc33hUs4%2BukA6oBxRrqaJUG2HeIehowR%2B7ekkchHwErktM88aA%3D%3D"}]}
cf-ray: 9bfd3d270fc7ccbb-BLR
alt-svc: h3=":443"; ma=86400
HTTP/2 302
date: Sun, 18 Jan 2026 09:59:19 GMT
content-type: text/html;charset=utf-8
location: https://biorxiv.org/lookup/doi/10.1101/052118
server: cloudflare
vary: Origin
vary: Accept
expires: Sun, 18 Jan 2026 10:07:48 GMT
permissions-policy: interest-cohort=(),browsing-topics=()
cf-cache-status: DYNAMIC
nel: {"report_to":"cf-nel","success_fraction":0.0,"max_age":604800}
strict-transport-security: max-age=31536000; includeSubDomains; preload
report-to: {"group":"cf-nel","max_age":604800,"endpoints":[{"url":"https://a.nel.cloudflare.com/report/v4?s=3XKdMnTSw7ETR%2FcxsHWq7Lf3iQtY4UdrJvJEAOhayUl0hFusCsrP9YpQx6rNXFfNhPKPFU0gswTltLWKQ%2Bg3yi1BRxwSZQ%3D%3D"}]}
cf-ray: 9bfd3d29eb80ccbb-BLR
alt-svc: h3=":443"; ma=86400
HTTP/1.1 302 Found
Date: Sun, 18 Jan 2026 09:59:19 GMT
Content-Type: text/html; charset=iso-8859-1
Transfer-Encoding: chunked
Connection: keep-alive
server: cloudflare
location: https://www.biorxiv.org/lookup/doi/10.1101/052118
cf-cache-status: DYNAMIC
Nel: {"report_to":"cf-nel","success_fraction":0.0,"max_age":604800}
Report-To: {"group":"cf-nel","max_age":604800,"endpoints":[{"url":"https://a.nel.cloudflare.com/report/v4?s=k6pjhHss02lfO6nVce9puQZZvTxNLe%2FtRTcZScc2yQAftQhDgZuGYno%2BTHDtMYRs0bFeFC7hFScQkn7jT3cRJDeR1j3Dm9hJbw%3D%3D"}]}
CF-RAY: 9bfd3d2a6dd0578d-BOM
alt-svc: h3=":443"; ma=86400
HTTP/2 301
date: Sun, 18 Jan 2026 09:59:20 GMT
content-type: text/html; charset=UTF-8
location: https://www.biorxiv.org/content/10.1101/052118v2
cf-ray: 9bfd3d2e0f0920c5-BLR
x-content-type-options: nosniff
x-content-type-options: nosniff
x-drupal-cache: MISS
expires: Sun, 18 Jan 2026 10:29:20 GMT
cache-control: public, max-age=1800
x-varnish-ttl:
pragma: no-cache
vary: Accept-Encoding
x-highwire-sitecode: biorxiv
x-highwire-smart-code: biorxiv_production
x-varnish: 694610689
x-varnish-cache:
via: 1.1 varnish
cf-cache-status: MISS
set-cookie: __cf_bm=adOifxCu8pLkRbWoaeZyS34t0Yto.jNKG2SxhxijLEQ-1768730360-1.0.1.1-SoMy1_gjFclVL3mV2MS6ONhVCfbsHr9j5wW.fx.A99x6s1f3iR5ADPJKEcV1tTzqNA6JPS8cI42DWT8iKwjEPZtLQD2R4M.r8MHsc6XBNEc; path=/; expires=Sun, 18-Jan-26 10:29:20 GMT; domain=.www.biorxiv.org; HttpOnly; Secure; SameSite=None
server: cloudflare
HTTP/2 200
date: Sun, 18 Jan 2026 09:59:21 GMT
content-type: text/html; charset=utf-8
content-encoding: gzip
x-content-type-options: nosniff
x-content-type-options: nosniff
x-drupal-cache: MISS
expires: Sun, 19 Nov 1978 05:00:00 GMT
cache-control: no-cache, must-revalidate
set-cookie: SSESS1dd6867f1a1b90340f573dcdef3076bc=dNhg7a5uWSfHNyCUXEoy_pGghdDYDozN4KBD_Y0lFWg; expires=Tue, 10-Feb-2026 13:32:40 GMT; path=/; domain=.biorxiv.org; secure; HttpOnly
content-language: en
x-frame-options: SAMEORIGIN
x-generator: Drupal 7 (https://drupal.org)
link:
; rel="canonical",; rel="shortlink"
vary: Accept-Encoding
x-highwire-sitecode: biorxiv
x-highwire-smart-code: biorxiv_production
x-varnish: 1892482365
age: 0
via: 1.1 varnish
x-varnish-ttl:
x-varnish-cache:
cf-cache-status: DYNAMIC
server: cloudflare
cf-ray: 9bfd3d31aaeb20c5-BLR
Denoising Genome-wide Histone ChIP-seq with Convolutional Neural Networks | bioRxiv
New Results
Denoising Genome-wide Histone ChIP-seq with Convolutional Neural Networks
Pang Wei Koh, Emma Pierson, Anshul Kundaje
doi: https://doi.org/10.1101/052118

Abstract
Motivation Chromatin immunoprecipitation sequencing (ChIP-seq) experiments are commonly used to obtain genome-wide profiles of histone modifications associated with different types of functional genomic elements. However, the quality of histone ChIP-seq data is affected by a myriad of experimental parameters such as the amount of input DNA, antibody specificity, ChIP enrichment, and sequencing depth. Making accurate inferences from chromatin profiling experiments that involve diverse experimental parameters is challenging.
Results We introduce a convolutional denoising algorithm, Coda, that uses convolutional neural networks to learn a mapping from suboptimal to high-quality histone ChIP-seq data. This overcomes various sources of noise and variability, substantially enhancing and recovering signal when applied to low-quality chromatin profiling datasets across individuals, cell types, and species. Our method has the potential to improve data quality at reduced costs. More broadly, this approach – using a high-dimensional discriminative model to encode a generative noise process – is generally applicable to other biological domains where it is easy to generate noisy data but difficult to analytically characterize the noise or underlying data distribution.
Contact akundaje{at}stanford.edu
Copyright
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC 4.0 International license.