HTTP/2 301
date: Sun, 18 Jan 2026 10:01:50 GMT
content-length: 0
location: https://doi.org/10.1101/046508
server: cloudflare
vary: Origin
expires: Mon, 19 Jan 2026 10:01:50 GMT
permissions-policy: interest-cohort=(),browsing-topics=()
cf-cache-status: DYNAMIC
nel: {"report_to":"cf-nel","success_fraction":0.0,"max_age":604800}
strict-transport-security: max-age=31536000; includeSubDomains; preload
report-to: {"group":"cf-nel","max_age":604800,"endpoints":[{"url":"https://a.nel.cloudflare.com/report/v4?s=1efW%2FFkf4rkyEh22igRuGSUDGZjsQoDMyvcu0hvR%2BaUW6wUYjqbU99Zv2SM0WmokSjw1Vh3rih6J59BwceM01rw2slv%2BCA%3D%3D"}]}
cf-ray: 9bfd40dd5c672ffb-BLR
alt-svc: h3=":443"; ma=86400
HTTP/2 302
date: Sun, 18 Jan 2026 10:01:51 GMT
content-type: text/html;charset=utf-8
location: https://biorxiv.org/lookup/doi/10.1101/046508
server: cloudflare
vary: Origin
vary: Accept
expires: Sun, 18 Jan 2026 10:11:00 GMT
permissions-policy: interest-cohort=(),browsing-topics=()
cf-cache-status: DYNAMIC
nel: {"report_to":"cf-nel","success_fraction":0.0,"max_age":604800}
strict-transport-security: max-age=31536000; includeSubDomains; preload
report-to: {"group":"cf-nel","max_age":604800,"endpoints":[{"url":"https://a.nel.cloudflare.com/report/v4?s=4APDcU9h%2BToMt0%2ByBzijhpUEckuf%2BUa7QK6PhLLA6BW%2Bq2KeKka2hJ1QWZ4WL5Zk6NurpXoKiRiXHIV1Z%2FQlRDFc3Tt39A%3D%3D"}]}
cf-ray: 9bfd40ddacc12ffb-BLR
alt-svc: h3=":443"; ma=86400
HTTP/1.1 302 Found
Date: Sun, 18 Jan 2026 10:01:51 GMT
Content-Type: text/html; charset=iso-8859-1
Transfer-Encoding: chunked
Connection: keep-alive
server: cloudflare
location: https://www.biorxiv.org/lookup/doi/10.1101/046508
cf-cache-status: DYNAMIC
Nel: {"report_to":"cf-nel","success_fraction":0.0,"max_age":604800}
Report-To: {"group":"cf-nel","max_age":604800,"endpoints":[{"url":"https://a.nel.cloudflare.com/report/v4?s=h1qMFCfZlO%2FXlXQvp6RhSA1vA0A8r1HqsdIfUd3dqsZSFyo01SzFgomDXGJRMyy%2FqQLxLZ8r75sXmNT9BEBuwGkibHTJ9Slmtw%3D%3D"}]}
CF-RAY: 9bfd40de1a831c71-BOM
alt-svc: h3=":443"; ma=86400
HTTP/2 301
date: Sun, 18 Jan 2026 10:01:52 GMT
content-type: text/html; charset=UTF-8
location: https://www.biorxiv.org/content/10.1101/046508v1
cf-ray: 9bfd40e19c80c1a4-BLR
x-content-type-options: nosniff
x-content-type-options: nosniff
x-drupal-cache: MISS
expires: Sun, 18 Jan 2026 10:31:52 GMT
cache-control: public, max-age=1800
x-varnish-cache:
pragma: no-cache
vary: Accept-Encoding
x-highwire-sitecode: biorxiv
x-highwire-smart-code: biorxiv_production
x-varnish: 1892494794
x-varnish-ttl:
via: 1.1 varnish
cf-cache-status: MISS
set-cookie: __cf_bm=2izp243DFyfiDD.sZhoBv6ot2wBwWPkqqKG2Codr7D8-1768730512-1.0.1.1-XQAd1YxL_IY0WMqdN5UeWEou5lUMCb_CdtjOep_qozfrUvExx3NUWGoQyVceZgkYbehxn7xf5IuurTt_R1W2RdLMjZusCWCtY14PV2GgfoE; path=/; expires=Sun, 18-Jan-26 10:31:52 GMT; domain=.www.biorxiv.org; HttpOnly; Secure; SameSite=None
server: cloudflare
HTTP/2 200
date: Sun, 18 Jan 2026 10:01:53 GMT
content-type: text/html; charset=utf-8
content-encoding: gzip
x-content-type-options: nosniff
x-content-type-options: nosniff
x-drupal-cache: MISS
expires: Sun, 19 Nov 1978 05:00:00 GMT
cache-control: no-cache, must-revalidate
set-cookie: SSESS1dd6867f1a1b90340f573dcdef3076bc=kCg2Gca0p62pMoEI-DqC0PpzB4_dQAZt-_Um0WmEMfg; expires=Tue, 10-Feb-2026 13:35:12 GMT; path=/; domain=.biorxiv.org; secure; HttpOnly
content-language: en
x-frame-options: SAMEORIGIN
x-generator: Drupal 7 (https://drupal.org)
link:
; rel="canonical",; rel="shortlink"
vary: Accept-Encoding
x-highwire-sitecode: biorxiv
x-highwire-smart-code: biorxiv_production
x-varnish: 694623155
age: 0
via: 1.1 varnish
x-varnish-ttl:
x-varnish-cache:
cf-cache-status: DYNAMIC
server: cloudflare
cf-ray: 9bfd40e57df5c1a4-BLR
Sensitive detection of rare disease-associated cell subsets via representation learning | bioRxiv
New Results
Sensitive detection of rare disease-associated cell subsets via representation learning
Eirini Arvaniti, Manfred Claassen
doi: https://doi.org/10.1101/046508
Abstract
Rare cell populations play a pivotal role in the initiation and progression of diseases like cancer. However, the identification of such subpopulations remains a difficult task. This work describes CellCnn, a representation learning approach to detect rare cell subsets associated with disease using high dimensional single cell measurements. Using CellCnn, we identify paracrine signaling and AIDS onset associated cell subsets in peripheral blood, and minimal residual disease associated populations in leukemia with frequencies as low as 0.005%.
Copyright
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC 4.0 International license.