HTTP/2 301
date: Sun, 18 Jan 2026 10:01:58 GMT
content-length: 0
location: https://doi.org/10.1101/041616
server: cloudflare
vary: Origin
expires: Mon, 19 Jan 2026 10:01:58 GMT
permissions-policy: interest-cohort=(),browsing-topics=()
cf-cache-status: DYNAMIC
nel: {"report_to":"cf-nel","success_fraction":0.0,"max_age":604800}
strict-transport-security: max-age=31536000; includeSubDomains; preload
report-to: {"group":"cf-nel","max_age":604800,"endpoints":[{"url":"https://a.nel.cloudflare.com/report/v4?s=CcEiqmZoxvsKIndfqr2SjsAxT8KRgjPsEZO1QLwscvWSVH5hflPD%2Bx1ooAZ5Ypn552ltNHSwOhpLyEiVoOn7EQfUZF3rog%3D%3D"}]}
cf-ray: 9bfd410ddbe45ace-BLR
alt-svc: h3=":443"; ma=86400
HTTP/2 302
date: Sun, 18 Jan 2026 10:01:58 GMT
content-type: text/html;charset=utf-8
location: https://biorxiv.org/lookup/doi/10.1101/041616
server: cloudflare
vary: Origin
vary: Accept
expires: Sun, 18 Jan 2026 10:11:00 GMT
permissions-policy: interest-cohort=(),browsing-topics=()
cf-cache-status: DYNAMIC
nel: {"report_to":"cf-nel","success_fraction":0.0,"max_age":604800}
strict-transport-security: max-age=31536000; includeSubDomains; preload
report-to: {"group":"cf-nel","max_age":604800,"endpoints":[{"url":"https://a.nel.cloudflare.com/report/v4?s=2aOKGyi4R1p6qn7FvlbsoQcaA9RH7rV14tzv79RY2u4%2BqRRkSeNatkrN7rq%2BMRlIzGdp9QG43ui9iZ1Bv8mNfvcCWW2b3w%3D%3D"}]}
cf-ray: 9bfd410e2c385ace-BLR
alt-svc: h3=":443"; ma=86400
HTTP/1.1 302 Found
Date: Sun, 18 Jan 2026 10:01:59 GMT
Content-Type: text/html; charset=iso-8859-1
Transfer-Encoding: chunked
Connection: keep-alive
server: cloudflare
location: https://www.biorxiv.org/lookup/doi/10.1101/041616
cf-cache-status: DYNAMIC
Nel: {"report_to":"cf-nel","success_fraction":0.0,"max_age":604800}
Report-To: {"group":"cf-nel","max_age":604800,"endpoints":[{"url":"https://a.nel.cloudflare.com/report/v4?s=1ioMbkBJeK23XaCn6Bxi6XDTKPYixNusCclg%2FSIt2ZH7aU7dRSyKx%2BrWOBwW0SrIKxt%2BQ9MFeokaijqXvwbRusVnJNClMjdeRg%3D%3D"}]}
CF-RAY: 9bfd410e9b127629-BOM
alt-svc: h3=":443"; ma=86400
HTTP/2 301
date: Sun, 18 Jan 2026 10:01:59 GMT
content-type: text/html; charset=UTF-8
location: https://www.biorxiv.org/content/10.1101/041616v1
cf-ray: 9bfd4111decd8a2a-BLR
x-content-type-options: nosniff
x-content-type-options: nosniff
x-drupal-cache: MISS
expires: Sun, 18 Jan 2026 10:31:59 GMT
cache-control: public, max-age=1800
x-varnish-ttl:
pragma: no-cache
vary: Accept-Encoding
x-highwire-sitecode: biorxiv
x-highwire-smart-code: biorxiv_production
x-varnish: 694623624
x-varnish-cache:
via: 1.1 varnish
cf-cache-status: MISS
set-cookie: __cf_bm=yZZBKgv7kgfoFnekItHTMjzImGjMk4tZhazetEe2nrs-1768730519-1.0.1.1-HyOyb16JPvWyQgwB1AYJ9K.TuJ8SUwpUFwSV29UNSGxW7kJ8ZnfmoebeLJmUEmwCEPUlKNDCc.ZaeESe45yRIATfAsEu_dKUO2QS2N0fsFw; path=/; expires=Sun, 18-Jan-26 10:31:59 GMT; domain=.www.biorxiv.org; HttpOnly; Secure; SameSite=None
server: cloudflare
HTTP/2 200
date: Sun, 18 Jan 2026 10:02:01 GMT
content-type: text/html; charset=utf-8
content-encoding: gzip
x-content-type-options: nosniff
x-content-type-options: nosniff
x-drupal-cache: MISS
expires: Sun, 19 Nov 1978 05:00:00 GMT
cache-control: no-cache, must-revalidate
set-cookie: SSESS1dd6867f1a1b90340f573dcdef3076bc=ghcUgYi4qZVBh7gq2iyf8AGrmxWFETv_a5pC_FNFz9I; expires=Tue, 10-Feb-2026 13:35:20 GMT; path=/; domain=.biorxiv.org; secure; HttpOnly
content-language: en
x-frame-options: SAMEORIGIN
x-generator: Drupal 7 (https://drupal.org)
link:
; rel="canonical",; rel="shortlink"
vary: Accept-Encoding
x-highwire-sitecode: biorxiv
x-highwire-smart-code: biorxiv_production
x-varnish: 694623645
age: 0
via: 1.1 varnish
x-varnish-ttl:
x-varnish-cache:
cf-cache-status: DYNAMIC
server: cloudflare
cf-ray: 9bfd41154b538a2a-BLR
Genome-Wide Prediction of cis-Regulatory Regions Using Supervised Deep Learning Methods | bioRxiv
New Results
Genome-Wide Prediction of cis-Regulatory Regions Using Supervised Deep Learning Methods
Yifeng Li, Wenqiang Shi, Wyeth W. Wasserman
doi: https://doi.org/10.1101/041616

Abstract
Identifying active cis-regulatory regions in the human genome is critical for understanding gene regulation and assessing the impact of genetic variation on phenotype. Based on rich data resources such as the Encyclopedia of DNA Elements (ENCODE) and the Functional Annotation of the Mammalian Genome (FANTOM) projects, we introduce DECRES, the first supervised deep learning approach for the identification of enhancer and promoter regions in the human genome. Due to their ability to discover patterns in large and complex data, the introduction of deep learning methods enables a significant advance in our knowledge of the genomic locations of cis-regulatory regions. Using models for well-characterized cell lines, we identify key experimental features that contribute to the predictive performance. Applying DECRES, we delineate locations of 300,000 candidate enhancers genome wide (6.8% of the genome, of which 40,000 are supported by bidirectional transcription data) and 26,000 candidate promoters (0.6% of the genome).
Copyright
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license.