HTTP/2 301
date: Sun, 18 Jan 2026 10:02:08 GMT
content-length: 0
location: https://doi.org/10.1101/031906
server: cloudflare
vary: Origin
expires: Mon, 19 Jan 2026 10:02:07 GMT
permissions-policy: interest-cohort=(),browsing-topics=()
cf-cache-status: DYNAMIC
nel: {"report_to":"cf-nel","success_fraction":0.0,"max_age":604800}
strict-transport-security: max-age=31536000; includeSubDomains; preload
report-to: {"group":"cf-nel","max_age":604800,"endpoints":[{"url":"https://a.nel.cloudflare.com/report/v4?s=19gP%2BjccthP2r48Oh2SxQ3PBFFb9inNKA85FgpvzrEonk63QDVIdjK3jjIYEj%2F3syiTrexHy6cJRxpFH7nhRd81GFzSHNg%3D%3D"}]}
cf-ray: 9bfd41474b88cf00-BLR
alt-svc: h3=":443"; ma=86400
HTTP/2 302
date: Sun, 18 Jan 2026 10:02:08 GMT
content-type: text/html;charset=utf-8
location: https://biorxiv.org/lookup/doi/10.1101/031906
server: cloudflare
vary: Origin
vary: Accept
expires: Sun, 18 Jan 2026 10:10:59 GMT
permissions-policy: interest-cohort=(),browsing-topics=()
cf-cache-status: DYNAMIC
nel: {"report_to":"cf-nel","success_fraction":0.0,"max_age":604800}
strict-transport-security: max-age=31536000; includeSubDomains; preload
report-to: {"group":"cf-nel","max_age":604800,"endpoints":[{"url":"https://a.nel.cloudflare.com/report/v4?s=XX9OgzP4cnT7cyxMsA%2BCZvguCA7Jo9nFUHQQTOev1CVqosQ1ve3JYUlJiDr2yLQqmvRzl44sx2k6AK5iXVbWEm4VSGySIg%3D%3D"}]}
cf-ray: 9bfd4148bd8bcf00-BLR
alt-svc: h3=":443"; ma=86400
HTTP/1.1 302 Found
Date: Sun, 18 Jan 2026 10:02:08 GMT
Content-Type: text/html; charset=iso-8859-1
Transfer-Encoding: chunked
Connection: keep-alive
server: cloudflare
location: https://www.biorxiv.org/lookup/doi/10.1101/031906
cf-cache-status: DYNAMIC
Nel: {"report_to":"cf-nel","success_fraction":0.0,"max_age":604800}
Report-To: {"group":"cf-nel","max_age":604800,"endpoints":[{"url":"https://a.nel.cloudflare.com/report/v4?s=49zmDf1v0kxTcfUvLWD3%2B%2BlhB6pAuDGPgzTSqsAuiHC29EXxHbwwWKtGwBKDj4gaKdRtCyFHXJLEFCljIUIYA6uAWohp4zR0ihKg"}]}
CF-RAY: 9bfd41494fe946a8-BOM
alt-svc: h3=":443"; ma=86400
HTTP/2 301
date: Sun, 18 Jan 2026 10:02:10 GMT
content-type: text/html; charset=UTF-8
location: https://www.biorxiv.org/content/10.1101/031906v1
cf-ray: 9bfd414c6d842ffb-BLR
x-content-type-options: nosniff
x-content-type-options: nosniff
x-drupal-cache: MISS
expires: Sun, 18 Jan 2026 10:32:10 GMT
cache-control: public, max-age=1800
pragma: no-cache
vary: Accept-Encoding
x-highwire-sitecode: biorxiv
x-highwire-smart-code: biorxiv_production
x-varnish: 694624315
via: 1.1 varnish
x-varnish-ttl:
x-varnish-cache:
cf-cache-status: MISS
set-cookie: __cf_bm=y2jtpkWKUD8lWgVJIG96FDelhYFleV_MZ5lQkpqgjRg-1768730530-1.0.1.1-UMz3hHPxq9kphOMPnPWVuHDdXlm3As0flm0WDH4Ox6rzJ5.dUykyaHKe3nR1oD.LduucCIVkKxFm4e5fwqJuQiqLP2SRMgymzInpm1uqP5M; path=/; expires=Sun, 18-Jan-26 10:32:10 GMT; domain=.www.biorxiv.org; HttpOnly; Secure; SameSite=None
server: cloudflare
HTTP/2 200
date: Sun, 18 Jan 2026 10:02:11 GMT
content-type: text/html; charset=utf-8
content-encoding: gzip
x-content-type-options: nosniff
x-content-type-options: nosniff
x-drupal-cache: MISS
expires: Sun, 19 Nov 1978 05:00:00 GMT
cache-control: no-cache, must-revalidate
set-cookie: SSESS1dd6867f1a1b90340f573dcdef3076bc=nLZ21n6hpUloiCOZPqq1VvSJoq3H02wChVNSDOdNJSQ; expires=Tue, 10-Feb-2026 13:35:30 GMT; path=/; domain=.biorxiv.org; secure; HttpOnly
content-language: en
x-frame-options: SAMEORIGIN
x-generator: Drupal 7 (https://drupal.org)
link:
; rel="canonical",; rel="shortlink"
vary: Accept-Encoding
x-highwire-sitecode: biorxiv
x-highwire-smart-code: biorxiv_production
x-varnish: 694624369
age: 0
via: 1.1 varnish
x-varnish-ttl:
x-varnish-cache:
cf-cache-status: DYNAMIC
server: cloudflare
cf-ray: 9bfd4154dea22ffb-BLR
Learning structure in gene expression data using deep architectures, with an application to gene clustering | bioRxiv
New Results
Learning structure in gene expression data using deep architectures, with an application to gene clustering
Aman Gupta, Haohan Wang, Madhavi Ganapathiraju
doi: https://doi.org/10.1101/031906

Abstract
Genes play a central role in all biological processes. DNA microarray technology has made it possible to study the expression behavior of thousands of genes in one go. Often, gene expression data is used to generate features for supervised and unsupervised learning tasks. At the same time, advances in the field of deep learning have made available a plethora of architectures. In this paper, we use deep architectures pre-trained in an unsupervised manner using denoising autoencoders as a preprocessing step for a popular unsupervised learning task. Denoising autoencoders (DA) can be used to learn a compact representation of input, and have been used to generate features for further supervised learning tasks. We propose that our deep architectures can be treated as empirical versions of Deep Belief Networks (DBNs). We use our deep architectures to regenerate gene expression time series data for two different data sets. We test our hypothesis on two popular datasets for the unsupervised learning task of clustering and find promising improvements in performance.
Copyright
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.